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Introduction 

The current global coronavirus pandemic 19 (COVID-

19), caused by the novel coronavirus (SARS-CoV-2) 

and its variants, has led to extensive hospitalizations 

worldwide [1]. To date, more than 253 million infected 

people and more than 5 million deaths have been 

reported [2]. The seasonal cycle of respiratory viral 

diseases has long been widely recognized, as annual 

epidemics of influenza and colds hit the human 

population like clockwork in the winter season in 

temperate regions.  (See Figure 1): 

 

Fig.1: Influenza virus, human coronavirus and human respiratory syncytial virus (RSV) show clear peak incidences in the winter months, 
which is why they are sometimes referred to as winter viruses. To [3]

Abstract 

In addition to the known endemic respiratory viruses, the pandemic SARS-CoV-2 has been added, with 

terrible effects on the population worldwide. This virus, like many others, has a glycoprotein structure the 

so-called spike protein, which interacts with the ACE-2 receptor as a cellular entry gate and thus initiates 

the infection. Just as this glycosylation causes infectiousness, the effect of the protective antibodies is also 

determined by their degree of glycosylation. In particular, the so-called Fc part of the immunoglobulins plays 

an important role. The type of bound sugar such as fucose, mannose, sialic acid, etc. determines, among 

other things, which reactions are triggered by binding to immune cells such as NK cells to their existing Fc 

receptors. These include antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular 

cytotoxicity (ADCC), antibody-dependent cellular trogocytosis (ADCT) and antibody-dependent cellular 

complement deposition (ADCD). In addition to protective phagocytosis, these reactions can trigger the 

antibody-dependent enhancement (ADE) of the infection and also the dreaded cytokine storm in COVID-19 

patients. The functional diversification of IgGs by Fc glycosylation can be determined and tracked both after 

vaccination and during the disease. 

Keywords: SARS-CoV-2, COVID-19, antibody glycosylation, IgG glycosylation, glycomics, biomarkers. 

https://www.mediresonline.org/journals/journal-of-clinical-and-medical-reviews
mailto:info@mediresonline.org
https://www.mediresonline.org/journals/journal-of-clinical-and-medical-reviews
https://mediresonline.org/uploads/articles/1673247374image.png


 
Journal of Clinical and Medical Reviews 

How to cite this article: Antonis Tsamaloukas, (2022). Importance of glycosylation for SARS-CoV-2 virus, antibodies and COVID-19. Journal of Clinical and Medical Reviews. 1(2). DOI: 

10.58489/2836-2330/009.                              Page 2 of 7 

The four endemic human coronaviruses HCoV-229E, 

-NL63, -OC43 and -HKU1 contribute a significant 

proportion of upper and lower respiratory tract 

infections in adults and children [4,5] In addition, 

epidemics caused by SARS-CoV-1 and the newly 

emerged SARS-CoV-2 occur during the winter 

months [3,6]. However, whether this can lead to viral 

interference in the sense of excluding a "tripledemic" 

seems likely. 

SARS-CoV-2 and other respiratory viruses often 

"interfere" with each other. The COVID-19 pandemic 

has been associated worldwide with changes in 

respiratory virus infections that differed between virus 

types [7-9]. 

The decline in respiratory virus infections, including 

influenza viruses and respiratory syncytial virus 

(RSV), was most notable at the beginning of the 

COVID-19 pandemic and continued to varying 

degrees through subsequent waves of SARS-CoV-2 

infections [10, 11].  

A meta-analysis and systematic review showed that 

up to 19% of patients with COVID-19 co-infections 

and 24% with super-infections have infections [8]. 

The presence of co-infection or superinfection was 

associated with poor outcomes, including increased 

mortality [8]. 

The Coronaviridae (coronaviruses) are a long-known 

family of enveloped single (+) strand RNA viruses 

(ss(+)RNA [12, 13]. SARS-CoV-2 is a enveloped virus 

and the SARS-CoV-2 spike (S) protein mediates 

virion binding to human cells through its interaction 

with the ACE2 cell surface receptor and is one of the 

main immunization targets. The receptor binding 

domain (RBD) is a critical component of the S-protein 

subunit (S1) that binds to angiotensin-converting 

enzyme 2 (ACE2), a recognized receptor for virus 

entry. 

Most mutations occur in the spike (S) protein [14], a 

surface glycoprotein that plays a crucial role in viral 

infection (Figure 2).: 

 

Fig 2: Structure of SARS-CoV-2. Diagram showing the single-stranded RNA genome and proteins present in the coronavirus, as well as 
the primary and 3D structure of the spike protein. (Adapted from "An in-depth look into the structure of the SARS-CoV-2 spike glycoprotein" 
by Biorender.com) 

Glycosylation of the receptor binding domain of the 

spike protein of SARS-CoV-2 and the ACE2 receptor 

leads to stronger and more far-reaching binding 

interactions between the proteins [15-18]. This also 

applies to all virus variants. [19]. 

The viruses use the host cell machinery to glycosylate 

their own proteins during replication [20]. These viral 

host cell-derived glycans facilitate various structural 

and functional roles, from immune evasion by glycan 

shielding to enhancing immune cell infection [16, 20-

22]. With regard to the role of SARS-CoV-2 

glycosylation in viral replication, infectivity and 

immune response, glycosylation has major potential 

implications for therapeutic and vaccination strategies 

as well as serological testing [23]. Historically, the role 

of glycosylation in the dichotomous immune system 

has always been the focus of research [24-29]. The 

innate and adaptive immune response [30] in which 

glycosylation both plays a protective role and 

contributes to immune evasion by masking viral 

polypeptide epitopes and contributing to the cytokine 

cascade via non-fucosylated IgG, interact with a 

pronounced glycan epitope on the SARS-CoV-2 

spike protein. Glycosylation is the most common and 

complex post-translational protein modification. In 

addition to proteins, many lipids are glycosylated, and 

only recently it has been shown that elaborated 
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glycan structures can also be bound to RNA [31], as 

shown schematically in the following figure: 

 

Fig 4: Glycoprotein. Glycolipid and glycoRNA (according to [31]) 

The most intensively studied example of Importance 

of alternative protein glycosylation for biological 

functions are immunoglobulins [32,33], which are 

among the main weapons of humoral immunity. 

Immunoglobulin G (IgG) antibodies play an important 

role in the immune response against SARS-CoV-2. 

Antibodies are Y-shaped molecules (see Fig. 5, 6). In 

the past, research on humoral responses to viral 

infection focused mainly on the V-end of the Y: the 

antigen binding regions, or Fab (fragment antigen 

binding). Conversely, the tail of Y (also known as 

fragment crystallizable or Fc domain) has numerous 

effector functions, such as antibody-dependent 

cellular phagocytosis (ADCP), antibody-dependent 

cellular cytotoxicity (ADCC), antibody-dependent 

cellular trogocytosis (ADCT) and antibody-dependent 

cellular complement deposition (ADCD). Antibody-

dependent enhancement (ADE) also takes place via 

FCγR: 

 

Fig 5: Structure of IgG and the IgG N-linked glycan (according to [33]) 

Since the effector functions of IgG are modulated by 

N-glycosylation of the Fc region, the structure and 

possible function of the IgG N-glycome in relation to 

divergent COVID-19 disease courses was 

investigated [24, 34-38]. 

Although immune responses in humans generally 

produce fully fucosylated IgG [38-42], some antigen-

specific IgG responses may be predominantly 

afucosylated. The consequences of afucosylated 

reactions vary depending on the setting. Afucosylated 

antigen-specific IgG leads to immunopathology in 

SARS-CoV-2 [43-46] and dengue virus infections: 

 

Fig 6: Diversity and effector functions of human IgG (according to [47]) 
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Changes in galactosylation, fucosylation and 

sialysation are now well-established factors driving 

differential IgG function, ranging from inhibitory/anti-

inflammatory to activating complement and promotion 

of antibody-dependent cellular cytotoxicity (ADCC). 

Fc receptors (FcR) are expressed on immune cells 

and bind the Fc portion of immunoglobulin. Fcγ 

receptors (FcγR), the largest group of FcR, bind IgG 

and include several subtypes [48,49]. 

Antibody effector functions such as the ADCC, ADC 

and ADCD play a crucial role in immunity against 

several pathogens, especially in the absence of 

neutralizing activity. Two modifications of the IgG 

constant domain (Fc domain) regulate the effector 

function of immunoglobulins: changes in the antibody 

subclass and changes in a single N-linked glycan 

located in the CH2 domain of IgG Fc (Fig.6). 

The addition of different glycans can significantly alter 

the conformation of the Fc, with dramatic 

consequences for the IgG effector functions as Figure 

7 shows [50]: 

 

Fig 7: Functional implications of alternative glycosylation of IgG. (After [50]) 

This astonishing phenomenon that both SARS-Cov-2 

and the immune cells involved use post-translational 

glycosylation, on the one hand to penetrate the cells 

more easily and thereby "mask" themselves or to 

make the humoral response to the infection more 

effective, speaks for the evolutionary 

interdependence. It is therefore not surprising that 

immunoglobulin G glycans have been measured as 

an early indicator of the severity of COVID-19[36, 37, 

51] and can be used to monitor the disease [52]. The 

decoding of glycosylation processes by high-

throughput glycomics and proteomics open up future 

perspectives that explain pandemics from zoonotic 

origins to the mechanisms of infectious diseases in a 

well- founded way. [53-57]. 
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