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Introduction  

Lung cancer is the most common form of malignancy 

and cause of cancer-related deaths in the world, and 

the second leading form of cancer-related deaths in 

the United States.[1,2] Several types of lung cancer 

exist and may roughly be grouped into small cell lung 

cancer (SCLC) and non-small cell lung cancer 

(NSCLC), with the latter being broken down further 

into adenocarcinoma, squamous cell cancer, and 

large cell carcinoma.[3] Cases of respiratory cancers 

with metastases involving the brain have been 

associated with significantly higher levels of both 

morbidity and mortality.[4,5] An estimated 20% of 

patients who present with lung cancer will have a 

brain metastasis at the time of diagnosis, and up to 

50% of lung cancer patients will develop brain 

metastases (BrMs) over the course of their illness.[6-

8] The formation of BrMs is a complex, multistep 

process that involves the spread of cancerous cells 

from the initial site of neoplastic growth to the 

eventual colonization of the brain.[9,10] Genetic 

analyses have linked several driver mutations in the 

development of BrMs in varying lung malignancies: 

mutations in tumor suppressor LKB1 and KRAS are 

predictive of BrMs in NSCLCs;[11] lung 

adenocarcinomas with mutations in EGFR and ALK, 

and hyperactivity within the WNT signally pathway 

have demonstrated higher occurrence of BrMs;[12-

14] and upregulation of ANGT4 and PDGFRB genes 

have been linked with SCLC BrMs.[15] 

Central Nervous System Diagnosis 

BrMs are often initially detected from imaging as part 

of a metastatic tumor workup, or following the advent 

of clinical symptoms; with a definitive diagnosis later 

being confirmed via biopsy.[16,17] BrMs, particularly 

with those presenting with neurologic symptoms, are 

associated with a poorer prognosis.[4,18,19] 

However, outcomes are greatly improved when 

metastases are detected earlier, and are thus smaller 

in size.[4,18] Early detection could allow for use of 

minimally invasive procedures such as LITT,[20] 

stereotactic radiosurgery,[21-23] gamma knife 

surgery,[24] whole brain radiotherapy, or 

chemotherapy.[23] As such, there is increasing 

research for the detection of early brain metastases, 

with a focus on identifying risk factors.  

Previous research has identified several risk factors 

Abstract 

Lung cancer is a disease associated with significant morbidity and mortality on a global setting. This form of 

cancer commonly gives raise to metastatic lesions the brain, which can further worsen outcomes. In this 

focused review, we discuss an overview of lung cancers that metastasize to the brain: known risk factors; 

means of detection and diagnosis; and options for treatment including a comparison between surgical 

resection, stereotactic radiosurgery, and whole-brain radiation therapy. These interventions are still being 

assessed by clinical trials and continue to be modified through evidence-based practice. 

Keywords: lung cancer, brain metastasis, stereotactic radiosurgery, whole-brain radiation therapy. 

 

 

https://www.mediresonline.org/journals/journal-of-skeleton-system
mailto:info@mediresonline.org
https://portal.issn.org/resource/ISSN/2836-2284


 
Journal of Skeleton System 

How to cite this article: J. Goeckeritz, J. Cerillo, C. Sanghadia, Md. Reza Hosseini Siyanaki, A. Clark, K. Pierre, B. Lucke-Wold, (2022). Principles of Lung Cancer Metastasis to Brain. 

Journal of Skeleton System. 1(1). DOI: 10.58489/2836-2284/003                            Page 2 of 10 

specific for the presence of BrMs in NSCLC: being the 

female gender; concurrent lymphatic metastases; 

specific microRNA signatures; a high neutrophil to 

lymphocyte (NLR) ratio; elevated levels of 

neurofilament light chain; presence of EGFR driver 

mutation; and elevated serum levels of CEA, S100B, 

ProApolipoprotein A1 (apo A-1), Ki-67, VEGF-C, 

caspace-3, and calcium.[25-37] Sun, et at., have 

even postulated that ProApolipoprotein A1 and 

S100B alone may be used for an independent and 

accurate diagnosis of metastatic brain tumors; which 

could allow a clinician performing metastatic work ups 

to administer prophylactic treatments, such as 

intracranial irradiation.[25]  

Preclinical studies using rodent models have 

demonstrated early detection of BrMs by employing 

molecular MRI with contrast agents that highlight 

tumor vascular factors ALCAM21 and VCAM-1.[38-

40] Routine pre-operative and post-operative imaging 

should also be considered: a study by Yokoi, et al., 

showed that CT and MRI detected brain metastases 

in 6.8% and 7.1% of 155 and 177 patients, 

respectively, during the perioperative period for 

patients with non-squamous cell lung cancer.[41] 

Preclinical rodent studies have also indicated that 

brain metastases can be diagnosed even at 

micrometastatic stages by screening for urine 

metabolites; however, these were not specific for lung 

cancer.[42]  

The development of machine learning algorithms has 

also been shown as a promising method of early 

detection. Machine learning is performed by teaching 

a machine a dataset with known predictors and 

outcomes using algorithms. What the machine then 

“learns” can be used in diagnosis in datasets where 

the diagnosis is unknown. [43,44] Cho (2021) 

performed a systematic review and meta-analysis of 

12 studies using classical machine learning and deep 

learning on MRI modalities, revealing pooled 88.7% 

and 90.1 

Imaging Modalities 

Several options in terms of imaging modalities are 

available in the diagnosing of BrMs. Magnetic 

Resonance Imaging (MRI) is the modality primarily 

used in the diagnosing and localization of brain 

tumors in patients with brain lesions, as high level of 

availability, comparatively high resolution, and 

excellent capabilities for the characterization of soft 

tissues are provided by this device; additionally, with 

specific sequences, supplementary biological 

information like apoptosis, cell density, or 

angiogenesis can be measured (diffusion-weighted 

MRIs or perfusion-weighted MRIs)[48,49] Certain 

paramagnetic contrast agents (CA) can also reveal 

impaired blood-brain barriers (BBBs).[50] The 

downside to the modality is the lack of specificity for 

neoplastic tissue, which makes it challenging to 

detect malignancies, monitor cancer progression, or 

detect potential lesion growth.[51] Additionally, MRI is 

unable to assess treatment response after surgery, 

chemotherapy, or radiotherapy nor the quantity of 

inflammatory, demyelinating, infarction, and 

ischemia.[48]  

A molecular imaging technique called Positron 

Emission Tomography (PET), which detects emitted 

photons from radiotracers, is another advanced 

imaging technique widely used in brain cancer 

patients. Using PET imaging, metabolic processes, 

like glucose metabolism and amino acid uptake, can 

be measured noninvasively and quantitatively.[52] 

Despite this, PET is unable to distinguish between 

grey and white matter structural abnormalities. PET is 

also limited by its lower spatial resolution, and inability 

to detect rapid changes in brain activity.[53] However, 

PET does have the advantage of being able to co-

register medical images with other imaging methods. 

In oncology, integrating these two techniques to 

develop simultaneous multimodal imaging is 

particularly relevant, as it allows clinicians to assess 

the tumor microenvironment with the help of several 

diagnostic biomarkers. [54,55]  

Hybrid PET/MRI scanners enable high-resolution 

metabolic and anatomical imaging. [53,56] This 

method combines both the high sensitivity of PET and 

the high resolution of MRI to provide a 

comprehensive picture of anatomical details. These 

coupled PET and MRI examinations may prove to be 

significantly more advantageous than independent 

examinations when attempting to understand tumor 

characteristics and determining whether surgery or 

radiation therapy would be an more appropriate 

intervention.[54,57] However, there is no conclusive 

evidence that PET/MRI is superior to PET/CT in 

oncology, and hybrid PET/MRI systems typically 

require longer scanning times and are associated 

with higher costs when compared to PET/CT 

systems.[58]  

Radiopharmaceuticals should be selected based on 

the characteristics of the tumor being examined. PET 

tracers like [18F] fluorodeoxyglucose (FDG) are most 

used because tumor cells exhibit a higher glucose 

metabolism than healthy tissues [54,59] In cancer 

cells, [18F] FDG is trapped after crossing the BBB. 

Beta-emitting 14Cdeoxyglucose (DG) was 

demonstrated as a BBB crosser in the early 

1970s.[60] By the hexokinase system, [18F] FDG is 
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phosphorylated by glucose transporters and 

transported into cells. As a result, it persists in tissues 

for a long time since it cannot be metabolized.[61] 

[18F] FDG has a low specificity and shows a high 

background uptake by the normal brain despite its 

widespread use in clinical practice. A PET tracer 

based on amino acids was developed in response to 

these limitations. [54,62] It can be demonstrated that 

these amino acid tracers are elevated in malignant 

tumors because of unregulated protein synthesis, a 

symptom of increased cell proliferation.[49] The most 

common examples are 3'-deoxy-3'-[18F] 

fluorothymidine ([18F] FLT), 3,4-dihydroxy-6-[18F]-

fluoro-L-phenylalanine ([18F] FDOPA), and [11C] 

methionine ([11C] MET). [54,59,62,63]  

Treatment 

Current treatments for lung cancer patients with BrMs 

include supportive care, surgical resection, 

radiotherapies.[64] The integration of palliative care 

in the management of BrMs should also be 

considered as it has been shown to greatly improve 

the quality of life, appetite, and mood; and is 

correlated with better survival rates, despite less 

aggressive treatment.[65] Supportive medications, 

such as steroids and antiseizure drugs, have also 

demonstrated increased survival rates when coupled 

with traditional radiotherapies.[6,66-68]  

Surgical Management 

The discussion of surgically resecting BrMs is best 

understood by first outlining the distinct subsets of 

clinical presentations. One subset is when the tumor 

size is large and causing severe neurologic 

symptoms, such as mass effect.[69,70] The former 

subset often falls under the category of necessarily 

more urgent or emergent in nature, often requiring 

hastened neurosurgical intervention.[71,72] The 

mechanism behind this presentation may be either 

due to direct pressure on the brain tissue from the 

tumor itself, or from uncontrolled cerebral edema that 

secondarily increases intracranial pressure and can 

lead to acute herniation syndrome.[73] Given that 

some evidence points to the capacity for brain 

metastases to cause even more cerebral edema than 

primary tumors, this may further increase the 

importance of considering expedited neurosurgical 

intervention in these patients via resection of the 

tumor.[74,75]  

Another subset of patients who meet criteria for 

surgical resection are those with a brain metastasis 

that is not large or causing severe neurologic 

symptoms, but in patients in which the intracranial 

disease is limited, systemic disease is controlled, and 

the patient is functionally independent. 

[70,76]  Furthermore, surgery is often preferred with 

an extracranial metastasis from lung cancer if there is 

only one single lesion.[77] Given that radiation 

therapy is a commonly used treatment modality for 

brain metastases from lung cancer, it is also 

important to describe when surgery is preferred in 

these instances. This is often the case with BrMs that 

arise from a primary lung cancer that is resistant to 

radiotherapy.[78,79]  Surgery for patients comprised 

in this subset is also often indicated in patients who 

have had radiation therapy in the past, as this is often 

necessary to definitively distinguish between 

radiation-related tissue necrosis and presence of 

tumor metastasis.[80-82] Lastly, in patients with 

multiple brain metastases, surgical resection is 

commonly indicated for the dominant lesion. [83] A 

summary of the above indications is outlined in 

Figure.1 

 

Fig 1: Summary of treatment work process for BrMs. 
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Table 1: Summary of known risk factors and pre-clinical studies with early detection of BrMs in lung cancer. 

Known risk factors 

Advanced tumor grade, stage, and size 

Elevated serum CEA, S100b, Apo A-1, Ki-67, VEGF-C, caspace-3, 
calcium, NLR, NFL 

Female gender 

Lymphatic spread 

Adenocarcinoma, EGFR mutation 

mRNA-378, hsa-miR-210, has-miR-214, hsamiR-15a 

Pre-clinical studies 

Molecular MRI (contrast specific for ALCAM and VCAM) 

Machine learning models using MRI 

Routine perioperative imaging during lung resections 

Machine learning models using miRNA expression 

Machine learning models using demographic and patient factors 

Urine metabolites 
 

Radiation 

Radiotherapies in the treatment of metastatic brain 

lesions are primarily groups into Stereotactic 

radiosurgery (SRS), and whole brain radiation 

therapy (WBRT).[84,85] SRS is a non-invasive form 

of radiation therapy that uses concentrated, multi-

focal beams of radiation to destroy tissues.[84,86] 

There are multiple radiation delivery methods of SRS: 

Gamma Knife, Linear accelerator (LINAC), and 

Proton beam therapy. Gamma knife surgery uses 

gamma radiation in a very small operating field, while 

LINAC uses x-ray radiation with greater operating 

flexibility. Proton beam therapy is like Gamma knife 

and LINAC; however, it uses protons or neutrons 

instead of photons and has been thought to prevent 

some deleterious side effects related to conventional 

therapy. In contrast to the concentrated nature of 

SRS, whole brain radiation therapy (WBRT) is an 

exposure of the entire cranium to radiation.[87] 

WBRT is the current standard for treatment of BrMs 

from NSCLC in patients with multiple metastases.[88] 

Although WBRT is being replaced with SRS for other 

forms of BrMs, it remains the standard for NSCLC 

and SCLC metastases.[89]  

SRS and WBRT may be used exclusively as well as 

in conjunction with other modalities.[88] Literature 

reports that WBRT in addition to SRS has a negative 

impact on cognitive function post treatment, but also 

shows lower cancer recurrence rates overall.[85-

87,90-92] Aoyama et al. reported tumor reoccurrence 

rate of about 45% in SRS + WBRT and about 75% in 

SRS alone.[86] Brown et al. found that adult patients 

with 1-3 lung cancer metastasis who underwent 

SRS+WBRT (n=48) treatment had worse post-

operative cognitive scores and neurological 

deterioration compared to those treated with SRS 

alone (n=63).[90] These studies suggest that using 

SRS in conjunction with WBRT could lead to worse 

cognitive outcomes, but lower rates of tumor 

recurrence compared to exclusive SRS treatment.  

Treatment via SRS and WBRT differs in dosage and 

number of fractions. A fraction refers to dividing up 

the total radiation dosage into multiple treatments and 

maximizes the effectiveness of radiotherapy. This is 

accomplished by administering radiation on regularly 

time intervals which correlate with radiosensitive 

stages in the cell cycle of cancer cells.[93] SRS 

treatment typically consists of one fraction at a dose 

of 15-24 Gray (Gy).[93-95] However, new therapies 

like hypo-fractioned SRS (HF-SRS), that deliver 

multiple fractions, have recently shown to increase 

outcomes and decrease toxicity for large (>3cm) 

tumors.[93] A limitation to this approach is the 

possibility of tumor cell regrowth between fractioned 

doses.[93] In contrast to single dose SRS, WBRT is 

administered in multiple fractions. WBRT irradiates 

the entire cranium and is typically administered in 10 

fractions of 3 Grays (Gy).[84,88,96,97] Literature 

shows that fraction dosages greater than 3 Gy may 

be associated with WBRT-related neurotoxic 

effects.[96-98] WBRT may cause cognitive decline, 

but it may also treat micro-metastases that have gone 

undetected on imaging.  

When ionizing radiation is introduced to tissues, a 

large quantity of free radicals is created, and these 

free radicals combined with oxygen in the blood and 

destroy surrounding tissues.[99-101] Studies have 

demonstrated hypoxia to decrease radiation therapy 

results because of free oxygen able to 

radicalize.[101,102] As such, hypoxic tumors need 

2.5-3 times the radiation dosage to reach the same 

efficacy as non-hypoxic tumors.[99,103] Fractioning 

schedules allow time for blood to return to tumor cells, 

increasing the amount of oxygen available to be 

ionized and the overall effectiveness of radiotherapy. 
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Table 2: Summary of comparison between Whole Brain Radiation Therapy (WBRT), and Stereotactic Radiation Surgery (SRS). 

Therapy 
Type 

Treatment Dosage/Fraction Benefits Drawbacks 

WBRT 
Radiation to the entire 
cranium 

Multiple small doses 
fractionated treatments 3 
Gy x 10 Fractions 

May treat micro-metastasis 
not seen on imaging 

Greater radiation 
dosage to healthy 
tissue 

SRS 
Multifocal beams of 
radiation concentrated 
on the tumor only 

Single or multiple high-
dosage fractions/treatments 
15-24 Gy x 1 Fraction 

Decreased tumor toxicity 
>3cm Limits radiation 
dosage to healthy tissues 

Higher probability of 
tumor resurgence 

Conclusion 

The development of brain metastases in lung cancer 

patients continues to be a major health concern on a 

global scale. These metastatic tumors significantly 

increase both morbidity and mortality rates among 

patients. Despite advances in medical technology, no 

treatment yet exists without adverse effects, or low 

remission rates: surgical resection alone leaves 

concern for untreated micrometases; and 

radiotherapies are associated with gross cognitive 

decline. Optimum dosing and fractioning in both 

stereotactic radiosurgery and whole brain radiation 

therapy have been investigated to find an optimal 

approach, but results are not without there 

drawbacks. Ultimately, the most promising option for 

improving mortality and morbidity rates lies in the 

detection of brain metastases as early as possible; 

thereby minimizing the intensity of treatment—and 

therefore adverse consequences—needed.  
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