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Abstract

Cholangiocarcinoma (CCA) is a malignancy of the biliary tract epithelium and is the second most common
primary liver tumor following hepatocellular carcinoma (HCC): it accounts for ~15% of primary liver cancers
and ~3% of gastrointestinal malignancies. Due to late diagnoses, poor prognoses, and limited treatment
strategies, CCA shows a dismal outcome with a less than 5% overall 5-year survival and only a median
overall survival of ~7months. Moreover, epidemiological data show that the incidence (0.3—6 per 100,000)
and mortality (1 -6 per 100,000) of CCA is increasing globally over recent decades.

Cholangiocarcinoma (CCA) is associated with approximately 3,500 new cases, the second most

common primary liver tumor in Germany. Cholangiocarcinoma (CCA) is classified into anatomic subtypes
including intrahepatic CCA (iCCA), perihilar CCA (pCCA) and extrahepatic CCA (eCCA).

Keywords: cholangiocarcinoma (CCA), metabolism, mitochondrion, Tricarboxylic Acid cycle (TCA), Isocitrate
dehydrogenase (IDH), oncometabolite, ClarIDHy trial

Introduction | am unable to provide a complete review of all
Given a virtual explosion of published manuscripts ~ relevant studies here and point those who wish to
in the last decade (>6,000 publications), guidelines obtain additional information to other resources (see
for diagnosis and treatment of CCA( [1-3Jand the ~ Fig- 1):
many comprehensive and excellent reviews ([1-14]
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Fig 1: Number of publications indexed on PubMed per year using search terms “targeted” and “cholangiocarcinoma” from [15].
Cholangiocarcinoma (CCA) represents diverse tumors originating from cholangiocytes in the bile ducts. Depending on their anatomical
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location, CCA is classified as intrahepatic (iICCA) or extrahepatic (eCCA), and eCCA is further classified as perihilar or distal eCCA [16]
(Fig2). Consideration of an iCCA diagnosis in patients with CUP could improve timely diagnosis, molecular characterisation and treatment
[17].

Biliary tract cancer

>90% of cases are adenocarcinoma

Level 1 evidence for adjuvant chemotherapy: capecitabine
Palliative 1st-line chemotherapy: cisplatin/gemcitabine

No 2nd-line palliative chemotherapy with a demonstrated
survival benefit over active symptom control

Median overall survival: ~12 months

Intrahepatic cholangiocarcinoma

Risk factors: primary sclerosing cholangitis,
cirrhosis, Opisthorchis viverrini or Clonorchis
sinensis, obesity, diabetes, chronic hepatitis B and
C, hepatolithiasis, Lynch syndrome, biliary
papillomatosis, biliary duct morphologic anomalies
Typically presents as incidental hepatic lesion(s)
Radioembolization or radiation can be considered
for liver-predominant disease

Gallbladder cancer

* Females > males
* Risk factors: gallstones, gallbladder polyps,
chronic cholecystitis, Salmonella typhi,

Extrahepatic cholangiocarcinoma

Males > females
Risk factors: primary sclerosing cholangitis,

obesity, diabetes gallstones, Lynch syndrome, Opisthorchis
* Typically presents as an incidental finding viverrini or Clonorchis sinensis, bile duct
following cholecystectomy (localized stage) morphologic anomalies

or with abdominal pain (advanced stage) Typically presents with obstructive jaundice

Fig 2: BTCs are a group of different diseases which includes ICC, ECC, and gallbladder cancer. They differ in many aspects, such as
anatomical location, demographics, clinical presentations, and treatment options (from[16, 18]).

CCA is a relatively rare cancer with an incidence rate in the United States of 1.20 per 100 000 person-years from 2000 to 2015, based on
data from the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) Program.

Estimated incidence rates in the United States for iCCA and eCCA during this period were 0.77 and 0.43 per 100 000 person-years,
respectively.

Recent retrospective data analyses suggest that the incidence of CCA has increased in past decades in both the United States and most
European countries[19, 20](see Fig.3):
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Fig. 3: Worldwide incidence (cases/100,000) of cholangiocarcinoma (CCA) [20] from particularly that of iCCA. In the United States, the
annual percentage increases from 2003 to 2015 in iCCA and eCCA were 7.0 and 2.1, respectively.

In Western and Central Europe, age-adjusted incidence rates (per 100 000 person-years) from 2008 to 2012 for iCCA were highest in the
UK (1.15), France (1.13), and Germany (1.05), and those for eCCA were highest in Germany (0.74), the Netherlands (0.69), and Ireland
(0.68) (see Fig 3):
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Fig 4: Age-standardized ICC and ECC incidence rates by country, 2008-2012. ECC indicates (extrahepatic cholangiocarcinoma; ICC,
intrahepatic cholangiocarcinoma; from[19]).

Mortality rates for 2018 for iICCA and eCCA in males and females are shown in in Fig.4, Fig.5 respectively[21],
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Fig 5: Age-standardised mortality rates for intrahepatic and extrahepatic cholangiocarcinoma per 100,000 person-years for males from
Western countries for 2018.(from [21]).
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Fig 6: Age-standardised mortality for cholangiocarcinoma per 100,000 person-years — adapted from [22]

Although CCA is essentially a sporadic disease, diverse factors have been associated with increased risk of
CCA, including bile duct cyst, Caroli's disease, primary sclerosing cholangitis, cholelithiasis or
choledocholithiasis, parasitic liver infections, liver cirrhosis, hepatitis B or C virus infection, and hepatolithiasis
(iCCA only).

The high incidence of CCA in some East Asian countries, such as South Korea and Thailand, is due to the
endemic presence of OPISTHORCHIS, VIVERRINI and Clonorchis sinensis liver flukes (see Fig.7) and vertical
hepatitis B virus transmission.

The CCA incidence is 40 times higher in endemic areas of Thailand and China. Liver fluke-induced chronic
inflammation plays a crucial role in cholangiocarcinogenesis, as aflatoxin exposure in Chile, or other chemical
exposures.

Fig 7: Clonorchis sinensis Liver Flukes( from[23])
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Several high-throughput genomic sequencing analyses have elucidated the distinct mutational landscapes of

iCCA, pCCA and dCCA, thus revealing differences in biology between these anatomical subtypes of the
disease.

The genomic heterogeneity within biliary tract carcinoma is illustrated in the following Figure 8 and Figure 9:

Genomic Heterogeneity within Biliary Tract Cancer

Intrahepatic Cholangiocarcinoma
FGFR KRAS
TP53 MCL1
IDH1/2 SMAD4
ARID1A MLL3
CDKN2 ABAP1

Extrahepatic Cholangiocarcinoma

KRAS ARIDTA

TP53 IDH1/2

SMAD4 PIK3CA

CDK2NA MET

Gallbladder Carcinoma ERBB2 BRAF
TP53 PIK3CA
ERBB2 NRAS

CDKN2A BRAF
ARIDT1A AKAP11
KRAS GNAS

Fig 8: Most common genomic alterations identified based on anatomic location of biliary tract cancer ( from [24])

Single-nucleotide variants Insertions and deletions (indels) Copy number alterations
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Missense mutations _:.:-] Amplification (e.g. ERBB2, FRS2, FGF3, EGFR, MDM2, MET)
(e.. TP53, KRAS, IDH1, BRAF, PIK3CA)
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Nonsense mutations (e.g. ARIDIA, TP53, BAP1, PBRMI)
(e.. TP53, CDKN2A, SMAD4) Loss (e.g. COKN2A/B)
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(e.g. TP53, BAP1, ARID1A, PBRM1)

Chromosomal rearrangement;/fusion
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[T T

Gene fusion (e.g. FGFR2, RET, NTRK, ALK, ROS1)
Fig 9: Genetic alterations in cholangiocarcinoma (CCA) from([25]).

Cytotoxic chemotherapy has been the mainstay of systemic treatment and is well established as a means to
prolong life and to palliate cancer-related symptoms, though an explosion of drug development in recent years
has led to the adoption of several new forms of therapy[24] (see Fig.9). Itis certainly not surprising that metabolic
inhibitors were targeted decades ago, such as the development of aminopterin[26]. In this context, the
successes now achieved are the cornerstone for precision medicine[18, 27-32] or personalized medicine[33],
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which is based on molecular genetic data and is specifically directed against driver mutations, for example. The
extension or complementation of the modern therapeutic armamentarium includes monoclonal antibodies,
tyrosine kinase inhibitors, immune checkpoint inhibitors, CRISP based therapeutics and as well as cellular
therapies such as CAR-Tcell therapy (see Fig. 10, Fig. 11).

Advanced BTC Systemic Therapy Timeline
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Fig 10: Timeline of systemic treatments developed for the treatment of advanced biliary tract cancer (from [24]).
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Fig. 11: New and emerging targets in cholangiocarcinoma. ARID1A, AT-rich interaction domain 1A; BAP1, BRCAl-associated protein 1;
BRAF, v-raf murine sarcoma viral oncogene homolog B1; BRCA, breast cancer gene; ERK, extracellular signal-regulated kinase; FGFR2,
fibroblast growth factor receptor 2; HCQ, hydroxychloroquine; HER2, human epidermal growth factor receptor 2; IDH, isocitrate
dehydrogenase; KGDH, alpha ketoglutarate dehydrogenase; KRAS, Kirsten rat sarcoma virus; MDM2, mouse double minute 2; MEK,
mitogen-activated protein kinase; NTRK, neurotrophic tropomyosin receptor kinase; PDH, pyruvate dehydrogenase; PK CK2, protein kinase
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CK2; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma virus; RET, rearranged during transfection; TGF-B1, transforming growth

factor beta 1. (from[30])

From 2000 to 2022, R. Weinberg and D. Hanahan summarized and developed the hallmarks of cancer every
ten years to explain the mechanisms of the occurrence, development, and treatment response characteristics
of malignant tumors[34-36]. Characteristics of cancer summarized in Fig.12 will provide a reasonable
explanation for the multi-level process of human tumor pathology.

Limitless
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Fig 12: Hallmarks of cancer from 2000 to 2022 Hallmarks of cancer from 2000 to 2022.

Original hallmarks are the initially identified cancer feature;
emerging hallmarks are the features that have not been
determined in the corresponding period and need further
research and confirmation; enabling characteristics are the
features that have been proposed in the corresponding
period; colored circular arrows represent the time when the
cancer hallmarks were presented; “...” represents the time
when new cancer characteristics may be proposed in the
future. ([37] from [34, 35]

Metabolic reprogramming is a hallmark of cancer and
is one of the basic characteristics of cancer and has
been proved to be an important cancer treatment
strategy[38-40].

The hallmark of “Deregulating cellular metabolism"
involves the mitochondrial metabolism which is
reprogrammed in cancer[38, 41-46]. This year, in
2024, the discovery of the Warburg effect[38, 41-43,
47-53] will celebrate its 100th anniversary. Although
it has been foretold that “no one can doubt that we
understand the origin of cancer cells if .... we know
how the damaged respiration and the excessive
fermentation of the cancer cells originate”. Here,
Warburg showed that tumor tissue slices continued to
produce lactate even when oxygen was abundant, a
phenomenon of aerobic glycolysis now dubbed [54].
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Warburg effect was first
proposed by Otto Warburg.

The molecular mechanism of
Warburg effect was revealed
for the first time: HIF-1.

The regulation of energy
metabolism can be traced back
to the "Trinity" of transcription
) factors: c-Myc, HIF-1 and p53.
Energy metabolism
reprogramming was regarded
as one of the ten

characteristics of tumors.
Key enzymes of energy
metabolism: IDH1/2, HK2,
PKM2...

Other enzymes: WNT, mTOR...

Relationship between cancer
and immunity, inflammation
and microenvironment.
PDK1, IF1, CXCL12, PRL-3,
TLR3, NOX4...

Effects of nuclear receptors,

polyamines, post-translationa

Thee
on metabolic reprogramming;
Cholesterol metabolism;

ects of gut microbiota

Metabolic and immunotherapy.

modifications and ring finger
E3 ligases on energy
metabolism.
The IDH2 inhibitor
B Identification of Enasidenib (AG221) and
mutation site R132 IDH1 inhibitor Ivosidenib
of IDH1 (AG-120) Launched.
2006 2009 2021
2008 2017-2018
It is the first time to It is the first time to The first IDH1
reveal the reveal the vaccine: IDH1-Vac
correlation between correlation between
IDH1 mutation and IDH2 mutation and
cancer cancer

Fig 13: Research timeline of cancer energy metabolism reprogramming and IDH1/2. (A) Milestone events of cancer energy metabolism
reprogramming from 1924 to 2022. (B) Milestone events of IDH1/2 research from 2006 to 2021. The description of key events is on the

opposite side of the time. (from [37]).

When the activity of metabolic enzymes is disrupted
due to mutations or changes in expression levels, it
can result in various metabolic disorders that have
also been linked to cancer development. Recently
The Cancer Genome Atlas (TCGA) study in ICC was

published, and this integrated analysis of somatic
mutations, RNA expression, copy number, and DNA
methylation also led to a molecular classification
scheme and identified an IDH mutant—enriched
subtype with distinct molecular features, including low
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expression of chromatin modifiers, elevated
expression of mitochondrial genes, and increased
mitochondrial DNA copy number [55]. By means of
this integrative genomic analysis four distinct

subtypes were identified. One of it fulfilled one of the
hallmarks of cancer “Deregulating cellular
metabolism” as shown in the following Fig. 14:

TCGA Integrated Multi-omics of Cholangiocarcinoma
IDH Mutant Subtype

O

_Mitochondrial genes:

—

ECC IDH

CCND1 BAP1/FGFR2

CCND1 Amp [ |
ARIDTIALOF
PBRM1LOF

FGFR2 Fusion
BAP1 LOF
IDH Mutation

Il Promoter Exon 1

L .
SCNA
Methylation
mRNA
P
—7

ARID1A hypermethylation + { Chromatin Modifier genes

+ Strong molecular similarity to other IDH-mutant liver cancers

Fig 14: IDH-mutant subtype of iCCA (from [56]).

With the rise of genetic and molecular sequencing,
several driver mutations have been identified and
targeted as novel therapeutic approaches. The most
common genomic alterations include changes
in FGFR2, IDH1, IDH2, KRAS, BRAF, HER2, and the
tumor suppressor p53. In addition, increased
understanding of the cellular and molecular
constituents of the tumor microenvironment (TME)
has created opportunities for further novel therapeutic
approaches. Molecular profiing using next-
generation sequencing (NGS) has revealed a
complex genomic landscape of CCA that likely
reflects its heterogeneous etiology.

Notably, using NGS, the most commonly altered
genes have been identified for iCCA.

Certainly, to the surprise of any hematologist and
oncologist, identical mutations of metabolic enzymes
have been found in both solid and hematologic
malignancies. An important aspect is that
mitochondrial metabolism is reprogrammed in
cancer. In this year, in 2024, the discovery of the
Warburg effect will celebrate its 100th anniversary.

When the activity of metabolic enzymes is disrupted
due to mutations or changes in expression levels, it
can result in various metabolic disorders that have
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Cancer-associated mutations in IDH1 and IDH2 |
represent one of the most comprehensively studied
mechanisms of IDH pathogenic effect.

Ultimately, mitochondrial dysfunction and aerobic
glycolysis have become widely accepted as
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hallmarks of cancer.
The mitochondrial pathways in cancer as the
Tricarboxylic Acid cycle (TCA), the electron transport
chain (ETC), the oxidative phosphorylation
(OXPHOS) and the mitochondrial One-Carbon
metabolism are mainly affected (see Fig.15):
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Fig 15: Anabolic pathways that promote growth(from [41]),

Especially one mutated enzyme of the TCA came into the focus: Isocitrate dehydrogenase 1-3 (IDH 1, IDH 2,

IDH3).

Mutations in isocitrate dehydrogenase (IDH) have been identified in a spectrum of human malignancies.
Mutations in IDH1 were first identified in an exome resequencing analysis of patients with colorectal cancer [57].
Isocitrate dehydrogenase (IDH) is an important metabolic enzyme in the tricarboxylic acid cycle (TCA), whose

mutated genes are associated with a variety of

myelodysplastic Syndrome (MDS), glioma, cholangiocarcinoma, colon cancer,

chondrosarcoma[58-66] (see Fig. 16 see Fig.17):

tumors, including acute myeloid leukemia (AML),

prostate cancer and
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Fig 16: Epidemiology of isocitrate dehydrogenase (IDH) 1 mutations. Frequency of IDH1 mutations in different tumor entities and number
of newly diagnosed IDH1-mutated patients with respective tumor entity in Europe based on estimated tumor incidences. ( from[36])

Frequency of IDH2 mutations | Cases/year in Europe
Acute myeloid leukemia { w4+ « - 4085
Pediatric acute myeloid leukemia {» N
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Secondary glioblastoma - 4
Primary glioblastoma 0
Chondrosarcoma {4 - 59
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Melanoma 1 0
0 20 40 60 80 100
Percent mutated

Fig 17: Epidemiology of isocitrate dehydrogenase (IDH) 2 mutations. Frequency of IDH2 mutations in different tumor entities and umber of
newly diagnosed IDH2-mutated patients with respective tumor entity in Europe based on estimated tumor incidences.[36]

IDH mutation detection and 2-Hydroxyglutarate (D2HG) measurement have already been incorporated into
clinical practice in a number of settings and are under evaluation for their use as tools in the management of
several diseases. The rapid incorporation of IDH in the sense from “bench to the bedside” is illustrated in the
following Figure 18:
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Fig 18: Time line illustrating many of the key clinical and mechanistic discoveries made during the investigation of cancer-

associated IDH mutations. (from[66]).

Cancer-associated mutations
mechanisms of IDH pathogenic effect (see Fig19). |
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Fig 19: Deregulation of IDH enzymatic activity is associated with human disease. (from[59]) Upward or downward pointing arrows indicate
overexpression or downregulation of wild-type IDHs (shown in blue), respectively.

IDH1 and IDH2 are enzymes located in the cytoplasm and mitochondria, respectively. They are involved in cell
metabolism and transform decarboxylation of isocitrate to a-KG, resulting in the reduction of NADP+ to NADPH
(see Fig.20)
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Different subcellular localisations (IDH1: cytoplasm;
IDH2/3: mitochondria) and cosubstrate usage
(IDH1/2: NADP*; IDH3: NAD*) distinguish the 3
human IDHs. The effects of IDH1 variants, including
promotion of tumorigenesis, are proposed to manifest
because of metabolic changes including d-2HG
accumulation, depletion of NADPH and/or reduced
20G. Changes in d-2HG/20G levels are proposed to
inhibit 20G oxygenases involved in regulation of
expression, for example, PHD, JmjC KDM, or TET
enzymes. 206, 2-oxoglutarate; d-2HG, d-2-
hydroxyglutarate; IDH, isocitrate
dehydrogenase; HIF, hypoxia-inducible factor; HIF—
OH, hydroxylated HIF; PHD, HIF prolyl hydroxylase
domain enzyme; KDM, histone lysine demethylase;
NADP*, oxidised nicotinamide adenine dinucleotide
phosphate; NADPH, reduced nicotinamide adenine
dinucleotide phosphate; TCA, tricarboxylic acid; TET,
ten-eleven translocation oxygenase; VHL, Von
Hippel-Lindau; wt, wild-type.( from [67] .

In the presence of mutant IDH1 or IDH2, there is a
pathognomic accumulation of the oncometabolite 2-
HG[37, 68-70] which can activate cancer-related
processes. The product of the novel reaction, 2-HG,
is a poorly understood metabolite that does not
participate in any known productive metabolic
pathway. This oncometabolite is a very reliable
biomarker for CCA, because in other gastrointestinal

cancers it cannot be detected(from[67]
R-2-Hydroxyglutarate is found in all tumors with
canonical IDH1 and IDH2 mutations. Elevated d-2HG
levels serve as a robust biomarker
for IDH1/2 mutations in gliomas [26]. d-2HG levels in
plasma/serum can be analysed by liquid
chromatography-mass spectrometry (LC-MS).[71,
72].

Added to this is the advantage of this marker versus
the widespread use of CA19 — 9 in the serum, as its
concentration does not depend on the Lewis and
secretor genotypes of the blood groups[68, 73].
The spectrum of genetic events associated with
cholangiocarcinoma is not completely characterized,
but two studies examining mutations in the tumors of
several hundred patients with cholangiocarcinoma
have been conducted. IDH mutations were identified
in 10% to 23% of intrahepatic cholangiocarcinomas,
but not in extrahepatic cholangiocarcinomas.

Last year T. B. Karasic et al. gave a very informative
and readable overview on “Precision Medicine and
Immunotherapy Have Arrived for
Cholangiocarcinoma”[13]. In Fig. 21 are all new and
emerging targets depicted without taking into account
anatomical classification and heterogeneity. This is
so important because, for example, the "genetic
make-up between iCCA and eCCA is too distinctly
different as shown in Fig.21.
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Targetable mutations in BTC

Preferentially GBC
ERBB2/3 (1 to 20%)
PTEN loss (4 to 7%)

Preferentially iCCA
FGFR1-3 gene fusions (5 to 14%)
IDH1/2 substitution (5 to 20%)
MET amplification (0 to 4%)

Preferentially eCCA
PRKACA/B fusion

All BTC subtypes
KRAS 9to 35% 12to 47% 11 to 19%
CDKN2A/B 1to 18% 0to17% 0to 19%
PI3K/mTOR 4 to 16% 4 to 25% 7 to 14%
TP53 3to32% 18 to 45% 43 to 46%
BRAF 4 to 22% 3% 0to33%
MGMT methylation 38% 26% 62%
dMMR/MSI-H 1to 10% 1to 13% 1to 36%
NTRK gene fusions 0 to 3.6% (all subtypes)

Fig 21: Selected targetable mutations in biliary tract cancers presenting rates, as well as those more common within particular subtypes.

BRAF proto-oncogene  B-Raf, BTC biliary  tract
cancer, CDKN2A/B cyclin-dependent kinase inhibitor
2A/B, dMMR/MSI-H deficient mismatch
repair/microsatellite instability-
high, eCCA extrahepatic

cholangiocarcinoma, ERBB erb-b2 receptor tyrosine
kinase, FGFR fibroblast growth factor
receptor, GBC gallbladder cancer, iCCA intrahepatic
cholangiocarcinoma, IDH isocitrate

dehydrogenase, KRAS Kirsten rat sarcoma viral

oncogene  homolog, MET MET  proto-oncogene
receptor tyrosine kinase, MGMT methylguanine-DNA
methyltransferase, mMTOR mammalian  target  of
rapamycin, NTRK neurotrophic  tyrosine receptor
kinase, PI3K phosphoinositide 3-
kinase, PRKACA/B protein kinase A/B catalytic
subunit, PTEN phosphatase and tensin

homolog, TP53 tumor protein P53.

Patients with advanced ECC have low rates of
molecular profiling, possibly in part because of
insufficient tissue.[4, 74-76] They also have low rates
of targeted therapy use and clinical trial enrollment.
While these rates are higher in advanced ICC, the
prognosis for both subtypes of cholangiocarcinoma
remains poor, and a pressing need exists for new
effective targeted therapies and broader access to
clinical trials[75, 77-80].

The characterization of a targetable mutation must be
followed by the development of a drug, preferably

orally. For the IDH1 and IDH 2, it was successful until
the market approval[81, 82]

Remarkably, non-small cell lung cancer (NSCLC) has
become the poster child for a lethal malignancy in
which numerous molecular aberrations have become
druggable[83, 84]. Similar to NSCLC, there are
limited responses in cholangiocarcinoma (CCA) to
conventional chemotherapy. Next-generation
sequencing has identified novel genomic alterations
in CCA that vary between patients and iCC versus
eCC( see Fig.15).
The development of specific inhibitors of IDH1 and
IDH2 very quickly led to FDA approval on August 25,
2021 for oral treatment with Ivosidenib (Tibvoso) for
AML and CCA[81, 82, 85, 86]. On August 25, 2021,
the FDA approved ivosidenib for the treatment of
adult patients with unresectable locally advanced or
metastatic hepatocellular isocitrate dehydrogenase 1
(IDH1) mutated cholangiocarcinoma (CCA) as
detected by an FDA-approved test with disease
progression after 1 to 2 prior lines of systemic therapy
for advanced disease[81]. Ivosidenib was approved
for locally advanced or metastatic
cholangiocarcinoma with IDH1 mutations based on
the results from the ClarIDHy study (JAMA
Oncol 2021; doi: 10.1001/jamaoncol.2021.3836).
This was an international, randomized, double-blind,
Phase 1l study comparing ivosidenib 500 mg by
mouth once daily (n=126) to matched placebo
(n=61).[81, 87]. The efficacy analyses were
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conducted in the intention-to-treat population (ITT),
defined as all patients who were randomly assigned
to treatment. Kaplan—Meier (K-M) methodology was

applied to summarize PFS and OS (see Fig.22 and
Fig. 23):
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Fig 22: ClarIDHy: K-M curves of PFS. Table at the bottom represents the number of patients at risk by treatment arm. PSF= progression

free survival. Information (from [81, 87]).

104
0.94
0.84
0.7
0.6
0.5+
0.4+
0.3+

Survival probability

0.24
0.11

0.0

AG-120 |126
Placebo | 61
Ll

13
50 43 35 29 27 2

97 8 72 62 53

18

48 42 2
7 20 8 4 4 2 1 1 1 0

+ Censored

32 25 18 14 10 7 6 5

0O 2 4 6 8

10 12 14

16 18

20 22 24 26 28 30 32 34 36

Months

Treatment — AG-120 — Placebo

Fig 23: ClarIDHy: K-M curves of OS. Table at the bottom represents the number of patients at risk by treatment arm. Source: FDA analysis,

unpublished data (from[81, 87]). OS=overall survival.

How to cite this article: Antonis G. Tsamaloukas. (2024). A New Era for Cholangiocarcinoma Therapy — Targeting Metabolic Enzymes. Journal of Clinical and Medical Reviews. 3(1);

DOI: 10.58489/2836-2330/016

Page 16 of 21


https://www.mediresonline.org/journals/journal-of-clinical-and-medical-reviews

The discovery of mutations in IDH genes
(IDH1 and IDH2) has revolutionized the therapeutic
approaches and opened a new research way focused
on possible targeted therapies capable of inhibiting
the aberrant activity of the mutated isoforms.
Isocitrate dehydrogenase 2 (IDH2) is a mitochondrial
protein which also promotes tumorigenesis via 2-HG
through activating mutations in codons 140 and 172.
Mutations in IDH2 occur less frequently in ICC (2%-
5%) than mutations in IDH1, and the only reported
study  targeting IDH2 in  patients  with
cholangiocarcinoma enrolled four patients and
observed no objective responses with enasidenib
[88].

The complexity of cholangiocarcinomas' molecular
genomics has opened avenues for improving the
outcome for this therapeutically challenging rare
disease. The European Society for Medical Oncology
(ESMO) Precision Medicine Working Group
recommends routine next-generation sequencing in
all cholangiocarcinoma patients,[88] given the
prevalence of multiple driver alterations that can be
matched to standard-of-care therapies or clinical trial
recruitment. The ESMO Scale for Clinical
Actionability of Molecular Targets (ESCAT) can be
used to guide patient selection for targeted
therapy. Integration of ESCAT into treatment
management, notably for intrahepatic
cholangiocarcinoma, offers clinicians a valuable tool
to expand therapeutic opportunites in a
chemotherapy-refractory setting[89].

In the era of precision oncology, molecular tumour
boards (MTBs) have an increasingly important role in
optimizing treatment selection to improve outcomes
by reviewing and interpreting molecular-profiling data
and matching patients with appropriate available
molecularly targeted therapies, which can include
investigational drugs[90].

Nowadays, the identification of targetable mutations
is a hot topic in oncologic field, since patients carrying
one or more actionable lesions could have broad
opportunities for treatment. The identifications of
differences in terms of targetable mutations’
incidence between IDH1m and IDH1wt patients could
suggest novel therapeutic strategies which could be
investigated in concomitating and/or in sequencing to
the recently studied IDH inhibitors.
The emerging therapies outlined in this review are
suitable to reshape the treatment landscape for
cholangiocarcinoma in the coming years.
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