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Introduction  

ICH is a medical emergency, resulting in a mortality 

rate of 35% to 52% at 30-days. Survivors' functional 

outcome is often very poor, with fewer than 20% 

being independent at six months [2]. 

ICH is typically divided into spontaneous (non-

traumatic) ICH and traumatic ICH. Spontaneous ICH 

accounts for 9%-27% of all strokes [3], but the global 

burden of brain hemorrhage is greater than that of 

ischemic stroke in terms of death and disability, even 

though the incidence of ischemic stroke is twice as 

great [4]. 

ICH refers to the accumulation of blood outside blood 

vessels within various spaces in the brain. Common 

categorization is based on the hemorrhage location: 

Intraparenchymal cerebral hemorrhage (IPH), 

Intraventricular hemorrhage (IVH), Subarachnoid 

hemorrhage (SAH), Subdural hemorrhage (SDH), 
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and Epidural hemorrhage (EDH). Traumatic ICH is a 

common result of traumatic brain injury (TBI) [5], and 

is the most common cause of death in lethally injured 

trauma patients accounting for up to 50% of fatalities 

[6], resulting in a significant amount of long-term 

disability [7]. 

ICH is a dynamically evolving process [8], in which 

response time is critical. Disease outcome is primarily 

affected by hematoma growth, perihematomal 

edema, and evolving intracranial pressure, that may 

necessitate immediate neurosurgical intervention, 

which may be life-saving [9]. Early detection and 

management of ICH have been proven to be 

associated with improved clinical outcomes [10,11]. 

Importantly, also in the setting of an acute ischemic 

stroke, it is essential to rule-out ICH as quickly as 

possible to enable optimal treatment to restore blood 

flow before irreversible brain damage occurs [12]. 

Both acute ischemic stroke and ICH present similar 

clinical features, but whereas treatment with 

thrombolytics is an essential part of ischemic stroke 

management [13], it can be fatal when given to a 

patient with ICH. The detection of ICH in a time-

efficient, and reliable manner is fundamental and 

crucial in both settings. 

The use of CT exams, since the 1970s, has changed 

the way we manage and diagnose patients, 

especially in the acute setting. The use of CT 

improved the treatment of many acute medical 

conditions, including stroke [14].  According to Power 

et al. (2016) CT has many advantages, such as 

availability of scanners and fast results, allowing 

physicians to confirm diagnoses and exclude critical 

conditions. 

Over the past decades, imaging and thereby 

radiologists’ on-call workload in the ambulatory and 

ER setting has shown tremendous growth. The 

increase in imaging studies over the past years 

represents a big challenge for radiologists and 

medical centers around the world and necessitates 

adjustments in the workforce and workflow to 

accommodate these evolving changes while 

guaranteeing the quality and safety of patients and 

avoiding radiologist’s burnout [15,16]. 

In the initial clearance in March 2018 [1], the United 

States Food and Drug Administration (FDA) 

approved Viz ICH as a notification-only, parallel 

workflow tool for use by hospital networks and trained 

clinicians to identify and communicate images of 

specific patients to a multidisciplinary team, 

independent of standard of care workflow. Viz ICH 

uses an AI based algorithm to analyze head NCCT 

images for findings suggestive of ICH and notifies 

appropriate medical specialists of these findings in 

parallel to standard of care imaging interpretation, as 

shown in figure 1. When ICH is suspected, the system 

sends a notification to a multidisciplinary team, 

recommending review of those images. Images can 

be viewed through a mobile application (figure 2) or 

via the Viz web viewer (figure 3). 

The primary focus of this study is to evaluate the 

performance of the Viz ICH device in terms of 

accuracy, sensitivity, specificity, PPV, NPV, and time-

to-notification on a diverse dataset from different 

hospitals of varying sizes and capabilities to obtain a 

robust estimate of performance that represents real-

world settings. 

Methods 

Data Collection 

The data consists of 4 subsets, each one collected 

sequentially from multiple hospitals during the time 

periods shown in Table 1. Data was collected and 

reviewed on a quarterly basis as a post-market real 

world performance monitoring quality assurance 

mechanism of the Viz ICH medical device. Selected 

hospitals and collection dates were chosen at random 

to enable variety and examine device generalization. 

Collection time periods were selected to represent the 

full range of intended population scanned throughout 

a day in both week/end days. 

Scans were excluded from the set-in cases of motion 

artifacts, metal artifacts and low quality that limit scan 

readability. Postoperative scans were also excluded 

due to inadequacy for the ICH screening task. 

The collected cohort demonstrates diversity of patient 

gender, age, scanning technical parameters (such as 

CT manufacturer and model, scan resolution and 

protocols). The hospital type also varied, with both 

Primary Stroke Centers (PSC) and Comprehensive 

Stroke Centers (CSC) (see Table 2). 

Truthing 

The CT scans were interpreted by radiology trained 

clinical specialists and a neuroradiology fellow. Every 

scan was evaluated for the existence of ICH and the 

bleed type. 

Time to Notification Measurement 

To assess the time saved, the time-to-notification was 

computed. The time-to-notification per scan relates to 

the time elapsed between the CT acquisition start 

time and the time in which the notification was sent to 

the user. 
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Statistical Analysis 

Statistical analysis was performed using descriptive 

data, including ranges, means, medians, standard 

deviations for continuous variables, and frequencies 

and percentages for categorical variables. System 

performance methods were examined using 

sensitivity, specificity, PPV and NPV. 

Confidence intervals were calculated with the 

Clopper-Pearson interval based on Beta distribution. 

Receiver Operating Characteristics (ROC) analysis 

was used to determine Viz ICH classification 

performance over multiple suspected ICH size 

volumetric thresholds. 

 

Fig 1: Management workflow for ICH, left: standard ICH workflow, right: ICH workflow with Viz ICH 

 

Fig 2: Viz ICH’s mobile DICOM viewer, examples for ICH suspected scans 
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Fig 3. Viz Web ICH suspected subjects list (TOP), single subject scan view (bottom) 

Table 1: Study consecutively collected subsets, time period, and hospital distribution. Notice that hospitals were used for data collection in 
multiple time periods as a part of timely, multi-site, consecutive performance evaluation on the Viz ICH device for quality control purposes. 

 
 
 

Subset # 

 
 
 

Time Period 

Number of hospitals 

Number of unique 
hospitals (appear on 

specified subset only) 

 
Number of repeat hospitals 

(Appear in more than one subset) 

 
1 

10/23/2021 00:00 - 
10/24/2021 23:59 

0 8 

 
2 

 
11/07/2021 00:00 - 
11/14/2021 23:59 

26 48 

 
3 

 
02/01/2022 00:00 - 
02/03/2022 23:59 

3 18 

4 

 
05/01/2022 - 00:00-08:00 
06/01/2022 - 08:00-12:00 
07/01/2022 - 12:00-15:00 

46 50 
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Table 2. Study population distribution 

Category Subcategory 
Number of Cases 

(out of 3156) 
Percentage of Cases 

Age range [Years] 

< 50 823 26.08% 

50-80 1672 52.98% 

> 80 661 20.94% 

Patient gender 
F 1707 54.09% 

M 1449 45.91% 

hospital Hierarchy 

Comprehensive Stroke Center 
(CSC - Hub) 

 
1585 

 
50.22% 

Primary Stroke Center (PSC - 
Spoke) 

1571 49.78% 

Slice Thickness [mm] 

2.5 868 27.50% 

3.0 572 18.12% 

4.0 183 5.80% 

5.0 1533 48.57% 

Number of Slices 

18-39 1529 48.45% 

40-59 779 24.68% 

60-125 848 26.87% 

manufacturers 

Canon Medical Systems 22 0.70% 

GE MEDICAL SYSTEMS 1309 41.48% 

Hitachi, Ltd. 6 0.19% 

Philips 154 4.88% 

SIEMENS 1172 37.14% 

TOSHIBA 493 15.62% 

Abbreviations: 

CSC - Comprehensive Stroke Center  

PSC - Primary Stroke Center 

MM - Millimeter 

Results 

Over the chosen timeframe, 3420 non-contrast head 

CT scans were analyzed by the Viz ICH algorithm, out 

of which 264 were excluded (see Truthing method 

section). Out of the 3156 scans, 147 were positive for 

ICH, with ICH prevalence of 4.6%. Scans were 

collected from 127 hospitals, 33 of them were 

comprehensive stroke centers (Hubs) and 94 primary 

stroke centers (spokes). Table 2 illustrates the 

distribution of study population according to patients’ 

age range and gender, hospital hierarchy and scan 

technical parameters, such as slice thickness, 

number of slices and scanner manufacturer. 

Study Scans Categorical Sub-Grouping  

Performance Analysis 

Table 3 describes Viz ICH’s performance. Viz ICH 

showed a high accuracy rate of 98.57%, [CI: 

98%,99%]. The algorithm identified 133/147 of ICH 

positive scans, and 2978/3009 of ICH negative scans, 

resulting in sensitivity, specificity, PPV and NPV of 

90.48% [CI: 85%,95%], 98.97% [CI:99%,99%], 

81.1% [CI:74%, 87%] and 99.53% [CI: 99%,100%], 

respectively. Performance was stratified by age, 

gender, and hospital hierarchy. As shown in Table 3, 

baseline factors (age, gender, and hospital hierarchy) 

did not show significant effect on sensitivity and 

specificity of ICH detection, based on a T-test held 

over these subgroups’ metrics differences (P-

Value<0.05). With respect to the type of hemorrhage, 

Viz ICH showed high sensitivity for the detection of 

IPH (97.62%) and SDH (90.0%) and a mixture of ICH 

subtypes (96.08%), whereas all other subtypes 

prevalence (EDH, IVH) was too low to establish a 

solid performance claim. Additional scan factors-

based performance stratification can be seen in 

Appendix A. 

In addition, Viz ICH mean time to notification 

measured was 203.14 sec (3.39 minutes) for all 

suspected ICH cases. The Receiver Operating 

Characteristic (ROC) curve for Viz ICH based on ICH 

volumetric detection threshold, is viewed in Figure 4. 

The curve demonstrates AI model detection reliability 

starting a volumetric threshold of the suspected ICH 

size detected. The Area Under the ROC Curve (AUC) 

was 0.97. 
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Error Analysis 

Table 4 classifies False Positive (FP) cases 

according to the reasons for the classification 

confusion. Figure 5 demonstrates common FP cases. 

Artifacts category, containing above mentioned 

artifact types, only contained scans where the 

artifacts did not limit the ability to identify ICH. Space 

occupying lesions that present as hyperdense 

lesions, may have a similar appearance as ICH, 

especially IPH. Calcifications in scans included 

calcified areas (pathological or benign) that were 

misidentified by the algorithm as ICH. Low scan 

quality refers to scans with a low signal to noise ratio.

 

Fig 4: Viz ICH classification ROC plot, based on ICH volumetric classification threshold (ranging from 0 to ~206 mL, the largest suspected 
ICH volume in the examined set) determining final device classification. The ROC curve shows an AUC of 97%. 

 

Fig 5: FP examples. Left to right: (A) Calcifications, (B) Space occupying lesion, (C) Metal artifacts. 

Table 3: Viz ICH’s diagnostic performance 

Category Subcategory Accuracy Sensitivity Specificity PPV NPV 

     81.1%  

 
General 

 98.57% 90.48% 98.97% 
 

[74%, 
99.53% 

 
Performance 

- [98%, 99%] [85%, 95%] [99%, 99%] 
 

87%] 
[99%, 100%] 

  (3111/3156) (133/147) (2978/3009) 
 

(133/164) 
(2978/2992) 

  97.62% 97.62%    

 IPH [87%, 100%] [87%, 100%] **1 ** ** 

  (41/42) (41/42)    

  75.0% 75.0%    

 IVH [19%, 99%] [19%, 99%] ** ** ** 

  (3/4) (3/4)    
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  90.0% 90.0%    

 SDH [73%, 98%] [73%, 98%] ** ** ** 

Bleed Type  (27/30) (27/30)    

  66.67% 66.67%    

 SAH [41%, 87%] [41%, 87%] ** ** ** 

  (12/18) (12/18)    

  66.67% 66.67%    

 EDH [9%, 99%] [9%, 99%] ** ** ** 

  (2/3) (2/3)    

 
 

Multiple 
96.08% 96.08%    

 
 

Bleeds 
[87%, 100%] [87%, 100%] ** ** ** 

  (49/51) (49/51)    

     80.0%  

 
Age range 

 98.91% 88.89% 99.25% 
 

[61%, 
99.62% 

 <50 [98%, 99%] [71%, 98%] [98%, 100%] 
 

92%] 
[99%, 100%] 

  (814/823) (24/27) (790/796) 
 

(24/30) 
(790/793) 

     81.1%  

 
General 

 98.57% 90.48% 98.97% 
 

[74%, 
99.53% 

 
Performance 

- [98%, 99%] [85%, 95%] [99%, 99%] 
 

87%] 
[99%, 100%] 

  (3111/3156) (133/147) (2978/3009) 
 

(133/164) 
(2978/2992) 

 

    80.61%  

 98.27% 88.76% 98.8% 
 

[71%, 
99.36% 

50-80 [98%, 99%] [80%, 94%] [98%, 99%] 
 

88%] 
[99%, 100%] 

 (1643/1672) (79/89) (1564/1583) 
 

(79/98)) 
(1564/1574) 

    83.33%  

 98.94% 96.77% 99.05% 
 

[67%, 
99.84% 

>80 [98%, 100%] [83%, 100%] [98%, 100%] 
 

94%] 
[99%, 100%] 

 (654/661) (30/31) (624/630) 
 

(30/36) 
(624/625) 

     89.02%  

  98.62% 86.9% 99.34% 
 

[80%, 
99.2% 

 Male [98%, 99%] [77%, 93%] [99%, 100%] 
 

95%] 
[99%, 100%] 

 
Patient gender 

 (1429/1449) (73/84) (1356/1365) 
 

(73/82) 
(1356/1367) 

  
 

98.54% 
 

95.24% 
 

98.66% 
73.17% 

 
99.82% 

 
 

Female 
 

[98%, 99%] 
 

[87%, 99%] 
 

[98%, 99%] 
[62%, 

 
[99%, 100%] 

  
 

(1682/1707) 
 

(60/63) 
 

(1622/1644) 
82%] 

 
(1622/1625) 

     (60/82)  

 Comprehens 
 

98.42% 
 

90.53% 
 

98.93% 
84.31% 

 
99.39% 

 ive Stroke 
 

[98%, 99%] 
 

[83%, 96%] 
 

[98%, 99%] 
[76%, 

 
[99%, 100%] 

 Center 
 

(1560/1585) 
 

(86/95) 
 

(1474/1490) 
91%] 

 
(1474/1483) 
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 (Hub)    (86/102)  

hospital       

 
Hierarchy 

Primary 
 

98.73% 
 

90.38% 
 

99.01% 
75.81% 

 
99.67% 

 Stroke 
 

[98%, 99%] 
 

[79%, 97%] 
 

[98%, 99%] 
[63%, 

 
[99%, 100%] 

 Center 
 

(1551/1571) 
 

(47/52) 
 

(1504/1519) 
86%] 

 
(1504/1509) 

 (Spoke)    (47/62)  

Abbreviations: 

PPV – Positive predictive value  

NPV – Negative predictive value  

IVH – Intraventricular hemorrhage  

SAH – Subarachnoid hemorrhage  

SDH – Subdural hemorrhage 

EDH – Epidural hemorrhage  

PSC – Primary stroke centers 

CSC – Comprehensive stroke centers 

Table 4: Classification of false positive cases according to FP reason 

 Number of Cases 
Percentage of 

Cases 

Artifacts (Skull artifacts, scan 
artifacts and metal artifacts) 

9 29.03% 

Space Occupying Lesion (SOL) 7 22.58% 

Calcifications 3 9.68% 

Low Scan Quality 3 9.68% 

Other 9 29.03% 

Total 31  

Table 5: Viz ICH’s diagnostic performance - additional technical factors sub-grouping. 

 

Sub- Category  Accuracy Sensitivity Specificity      PPV     NPV Category 

 

    99.11%   

  98.82% 92.54% [98%, 82.67% 82.67% 

 18-39 [98%, 99%] [83%, 100%] [72%, [72%, 

  (1511/1529) 98%] (1449/146 90%] 90%] 

   (62/67) 2) (62/75) (62/75) 

   86.11% 98.12% 68.89% 99.32% 

  97.56%     

Number of Slices   [71%, [97%, [53%, [98%, 

 40-59 [96%, 99%] 
 

95%] 
 

99%] 
 

82%] 
 

100%] 

  (760/779)     

   (31/36) (729/743) (31/45) (729/734) 

   90.91% 99.5% 90.91% 99.5% 

  99.06%     

   [78%, [99%, [78%, [99%, 

 60-125 
[98%, 
100%] 

 
97%] 

 
100%] 

 
97%] 

 
100%] 

  (840/848)     

   (40/44) (800/804) (40/44) (800/804) 

   89.13% 99.39% 89.13% 99.39% 

  98.85%     
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[98%, 99%] 
[76%, [99%, [76%, [99%, 

   96%] 100%] 96%] 100%] 

  (858/868)     

 2.5  (41/46) (817/822) (41/46) (817/822) 

   100.0% 98.21% 58.33% 100.0% 

  98.25% 
 

[77%, 
 

[97%, 
 

[37%, 
 

[99%, 

Slice Thickness  [97%, 99%]     

   100%] 99%] 78%] 100%] 

  (562/572)     

 3  (14/14) (548/558) (14/24) (548/548) 

  
 

97.27% 
83.33% 98.79% 88.24% 98.19% 

   [59%, [96%, [64%, [95%, 

  [94%, 99%]     

   96%] 100%] 99%] 100%] 

  (178/183)     

 4  (15/18) (163/165) (15/17) (163/166) 

    99.04%  99.59% 

 

 98.7% 91.3% [98%, 81.82% [99%, 

5 [98%, 99%] [82%, 99%] [71%, 100%] 

 (1513/1533) 97%] (1450/146 90%] (1450/145 

  (63/69) 4) (63/77) 6) 
 

    98.67%  99.64% 

  98.38% 91.11% [98%, 73.21% [99%, 

  [97%, 99%] [79%, 99%] [60%, 100%] 

  (1153/1172) 98%] (1112/112 84%] (1112/111 

 SIEMENS  (41/45) 7) (41/56) 6) 

    99.2%  99.52% 

  98.78% 90.62% [99%, 85.29% [99%, 

  [98%, 99%] [81%, 100%] [75%, 100%] 

 GE MEDICAL (1293/1309) 96%] (1235/124 93%] (1235/124 

Manufacturers SYSTEMS  (58/64) 5) (58/68) 1) 

   85.71% 100.0% 100.0% 99.32% 

  99.35%     

  
 

[96%, 
100%] 

[42%, [98%, [54%,100 [96%, 

   100%] 100%] %] 100%] 

  (153/154)     

 Philips  (6/7) (147/147) (6/6) (147/148) 

   90.32% 98.92% 84.85% 99.35% 

  98.38% 
 

[74%, 
 

[97%, 
 

[68%, 
 

[98%, 

  [97%, 99%]     

   98%] 100%] 95%] 100%] 

  (485/493)     

 TOSHIBA  (28/31) (457/462) (28/33) (457/460) 
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Discussion 

Viz ICH is an AI based tool, intended for analyzing 

NCCT images of the brain are often acquired in the 

acute setting and demand rapid interpretation for 

optimal patient care. When the algorithm identifies a 

scan as ICH suspected, the system notifies a 

multidisciplinary team, recommending immediate 

review of those images. Images can be promptly 

previewed through a web interface or through a 

mobile application, allowing clinicians to assess the 

case in a remote manner. 

Over the last years, radiologists’ workload has 

increased dramatically [17]. Long-hour shifts, 

increasing number of scans, and manpower shortage 

may not only lead to radiologist’ burnout but also risk 

critical diagnostic errors [18,19]. Since medical 

imaging is a major contributor to the overall diagnostic 

process, it is also a major potential source of 

diagnostic error [20]. Clinically significant errors may 

vary between 2-20% [21]. Different methods such as 

double reporting was shown to be effective [22] but 

are time consuming and demand more workforce 

[23]. AI based algorithms, such as Viz ICH, could be 

used to improve the workload on radiologists, shorten 

reporting time and serve as additional tools for 

radiologists. 

ICH is a life-threatening condition, with high mortality 

rates, and complex morbidity [24]. ICH is generally an 

acutely evolving process, for which quick diagnosis 

and treatment are key to better outcomes [24,25]. 

Most importantly missed ICH in NCCT scans may 

have a fatal impact on patients, leading to delay in 

diagnosis, complications, and death [26]. AI tools, 

designed to detect and notify about suspected ICH, 

could help decrease error rate, minimize false 

negatives diagnosis [27] and shorten notification 

time. 

In this study, we aimed to examine the performance 

of Viz ICH in real-life settings. While FDA clearances 

of computer-aided triage devices typically include 

supporting information regarding the sensitivity and 

specificity of the cleared device as well as average 

time-savings, these data-points need to be validated 

in a real world setting for several reasons: 

● Quality bias: sites participating in pivotal studies 

supporting FDA submissions are typically at the 

cutting edge of the field. As such, the average 

quality of a scan at a site participating in a pivotal 

study may not represent the average quality of a 

scan in an average hospital in the US. Thus, 

these data may be biased to have higher quality 

imaging due to more modern or advanced 

equipment. Greater experience of the CT 

technologists and staff may lead to fewer 

technical issues or patient-driven issues, such as 

patient motion. 

● Overfitting due to lack of diversity in data: 

Overfitting [28] is a general problem in modeling 

whereby a model may have good predictive 

capabilities on a training dataset, but lower 

performance on real-world data. While there are 

many reasons for this phenomenon, the most 

relevant for AI applications in medical imaging is 

when the distribution of the training set data is 

different from the distribution of the real-world test 

data. For example, a device developed using 

data from only a subset of scanner makes, 

models and configurations, might obtain good 

performance on these data, but yield lower 

performance when applied on more diverse data. 

When a device is developed using a dataset with 

limited diversity, there is risk that performance on 

data of greater diversity will be lower. 

● Accuracy: Since Viz ICH was approved, a great 

amount of data was processed from many sites. 

This real-world data could be leveraged to 

evaluate the AI performance more accurately. 

● Generalization: The use of real-world evidence, 

such as that presented here, may help payors, 

clinicians, and administrators decide if there is 

sufficient evidence that the proposed solutions 

would work in their specific situations. Moreover, 

demonstration of effectiveness of workflow 

enhancements - such as earlier alerting of 

specialists - does not necessarily guarantee 

transferability of that enhancement to a different 

system without understanding the specific 

circumstances of that system. The value of such 

evidence is to demonstrate the realistic 

possibility. 

● Data Drift: Supervised AI algorithms employ past 

examples-based learning to predict requested 

outputs. In a clinical dynamic environment 

setting, this static approach preserves the original 

data distributions learned. A likely outcome of this 

setup is a decrease in performance over time due 

to a change in data distribution due to either 

technical or clinical changes that manifest in 

imaging visual modifications. Practically this 

means deployed algorithms must be monitored to 

ensure their safety over time. 

In 2022, Matsoukas, Stavros, et al [29] published an 

article examining Viz ICH real world performance, in 

all hospitals of the Mount Sinai Health System. In the 
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here presented study, we aimed to examine a larger 

cohort of sites, varying in equipment, population, 

protocol, and personnel skills, thus exploring AI 

model generalization over a diversified dataset. 

In this study, we examined scans from 127 hospitals, 

33 comprehensive stroke centers (Hubs) and 94 

primary stroke centers (spokes). The hospitals are 

using different CT manufactures and protocols as 

seen in table 2. The extensive and varied nature of 

our study mitigate the risk of bias and the artificial 

inflation of performance metrics, commonly observed 

in studies featuring minimally diverse and 

homogeneous cohorts. Such comprehensive 

coverage ensures our findings are robust, reflecting 

true clinical utility rather than the biased results of 

more limited research settings, such as single site 

studies. 

The algorithm demonstrated robustness to 

differences in sensitivity and specificity over all 

subgroups such as gender, age group and hospital 

hierarchy. When comparing FP scans causes 

between CSC and PSCs, the latter group had shown 

larger amounts of SOLs misidentified as ICH by Viz 

ICH, a factor unrelated to the hospital hierarchy. In 

addition, a slight increase in artifacts containing scans 

was spotted in the PSCs subgroup, which in 

combination with the lower sample size of this group 

compared with CSC, may be the cause for the 

difference detected in PPV. A different prevalence of 

stroke suspected patients, arriving at PSCs vs. CSC 

can also provide further justification to the difference 

in PPV. 

Viz ICH mean time to notification is 3.39 minutes. 

Such notification time allows a multidisciplinary team 

to review suspected cases with higher priority, which 

can lead to faster diagnosis, assist treatment 

decisions, and result in better outcomes. When 

examining radiologists’ performance, their mean time 

to report is 132 minutes. When an AI algorithm assists 

the radiologists, their mean time to report is shortened 

to 73 minutes [30]. 

When examining Viz ICH’s sensitivity to bleed types, 

variations in sensitivity are seen. Viz ICH is more 

sensitive to IPH (97.62% CI 87%,100%) and SDH 

(90.0% CI: 73%,98%), than to IVH (75% CI 

19%,99%), EDH (66.67% CI 9%,99%) and SAH 

(64.71% CI 38%,86%). It is worth mentioning that IVH 

EDH, and SAH have low prevalence in this study (five 

IVH positive cases, 3 EDH positive cases, 18 SAH 

positive cases), resulting in a wide confidence 

interval, questioning the statistical significance of 

these specific findings. Hence, further investigation 

with a cohort enhanced with positive cases for EDH, 

IVH and SAH is needed to determine Viz ICH’s 

sensitivity for these ICH subtypes.  It is also worth 

mentioning, that the prevalence of SAH in this study 

was low with only 18 positive cases, equivalent to 

0.006%. In 2019, the US recorded 0.85 million SAH 

cases [31], with an estimated population of 328.24 

million for that year [32]. Based on these parameters, 

we can estimate the SAH prevalence to be 0.003%. 

SAH incidence rates vary between 6.2 and 11.15 per 

100,000 people [33,34]. A low disease prevalence is 

typically associated with lower sensitivity in detection. 

The low prevalence of SAH, could account for the 

observed lower sensitivity of SAH compared to the 

overall sensitivity for all bleed types in this study.  

ICH prevalence in this study was 4.6%, which is 

significantly higher than ICH prevalence in the 

general population documented in epidemiological 

studies [35,36]. Other than the fact that the 

subpopulation of people who go through head CT in 

the hospital setting is more prone to have ICH than 

the general population, this gap could be explained 

by the fact that scans reviewed by Viz ICH algorithm 

are only scans that where included upon certain 

criteria (e.g., head injury, stroke protocol, etc.), which 

are more susceptible to be positive for ICH, compared 

to the general population. 

Limitations 

The study data was collected from the data available 

for the Viz ICH algorithm. Important information 

regarding patients, such as medical history, clinical 

presentation, laboratory exams and clinical 

outcomes, was not available for this study. 

Literature review of ICH subtype prevalence lacked 

coherent measurements of comparison [33,34,35], 

which leads to a difficulty determining each subtype 

prevalence in the general population. Thus, we 

couldn’t assess the external validity of this article in 

relation to real world prevalence of ICH subtypes. 

Conclusion 

Viz ICH demonstrates robust performance in 

identifying ICH on NCCT in most parameters, despite 

the heterogeneity of setting, equipment, and 

processes. Therefore, it can be considered a reliable 

and efficient AI tool for medical centers of all sizes 

and capabilities. It shows excellent accuracy, 

sensitivity, specificity and NPV values, as well as swift 

time to notification, which can have a significant 

impact on patients' lives. 

Conflict of interest 

All the authors are employees of Viz.ai, and receive a 

salary from Viz.ai, the company responsible for the 

https://www.mediresonline.org/journals/hematology-and-disorders


 
Hematology and Disorders 
 

How to cite this article: Khen Sela Peremen, Naama Avni, Lilian Atlan, Dor Amran. (2024). Real-World Performance of Ai-Powered Ich Triage System. Journal of Hematology and 

Disorders. 3(1); DOI: 10.58489/2836-3582/010                            Page 12 of 13 

development and commercialization of the AI 

algorithm discussed in this article. 

References 

1. https://www.accessdata.fda.gov/scripts/cdrh/cfd

ocs/cfpmn/pmn.cfm?ID=K210209 

2. Elliott, J., & Smith, M. (2010). The acute 

management of intracerebral hemorrhage: a 

clinical review. Anesthesia & Analgesia, 110(5), 

1419-1427. 

3. Feigin, V. L., Lawes, C. M., Bennett, D. A., 

Barker-Collo, S. L., & Parag, V. (2009). 

Worldwide stroke incidence and early case 

fatality reported in 56 population-based studies: a 

systematic review. The Lancet Neurology, 8(4), 

355-369. 

4. Krishnamurthi, R. V., Feigin, V. L., Forouzanfar, 

M. H., Mensah, G. A., Connor, M., Bennett, D. A., 

... & Murray, C. (2013). Global and regional 

burden of first-ever ischaemic and haemorrhagic 

stroke during 1990–2010: findings from the 

Global Burden of Disease Study 2010. The 

Lancet Global Health, 1(5), e259-e281. 

5. Subaiya, S., Roberts, I., Komolafe, E., & Perel, P. 

(2012). Predicting intracranial hemorrhage after 

traumatic brain injury in low and middle-income 

countries: a prognostic model based on a large, 

multi-center, international cohort. BMC 

emergency medicine, 12(1), 1-7. 

6. Kauvar, D. S., & Wade, C. E. (2005). The 

epidemiology and modern management of 

traumatic hemorrhage: US and international 

perspectives. Critical Care, 9(5), 1-9. 

7. Corrigan, J. D., Selassie, A. W., & Orman, J. A. 

L. (2010). The epidemiology of traumatic brain 

injury. The Journal of head trauma 

rehabilitation, 25(2), 72-80. 

8. Elliott, J., & Smith, M. (2010). The acute 

management of intracerebral hemorrhage: a 

clinical review. Anesthesia & Analgesia, 110(5), 

1419-1427. 

9. Flower, O., & Smith, M. (2011). The acute 

management of intracerebral 

hemorrhage. Current Opinion in Critical 

Care, 17(2), 106-114. 

10. Kellner, C. P., Schupper, A. J., & Mocco, J. 

(2021). Surgical evacuation of intracerebral 

hemorrhage: the potential importance of 

timing. Stroke, 52(10), 3391-3398. 

11. Bir, S. C., Maiti, T. K., Konar, S., & Nanda, A. 

(2016). Overall outcomes following early 

interventions for intracranial arteriovenous 

malformations with hematomas. Journal of 

Clinical Neuroscience, 23, 95-100. 

12. Herpich, F., & Rincon, F. (2020). Management of 

acute ischemic stroke. Critical care 

medicine, 48(11), 1654. 

13. Phipps, M. S., & Cronin, C. A. (2020). 

Management of acute ischemic stroke. Bmj, 368. 

14. Power, S. P., Moloney, F., Twomey, M., James, 

K., O’Connor, O. J., & Maher, M. M. (2016). 

Computed tomography and patient risk: Facts, 

perceptions and uncertainties. World journal of 

radiology, 8(12), 902. 

15. Lantsman, C. D., Barash, Y., Klang, E., Guranda, 

L., Konen, E., & Tau, N. (2022). Trend in 

radiologist workload compared to number of 

admissions in the emergency 

department. European Journal of 

Radiology, 149, 110195. 

16. Kocher, K. E., Meurer, W. J., Fazel, R., Scott, P. 

A., Krumholz, H. M., & Nallamothu, B. K. (2011). 

National trends in use of computed tomography 

in the emergency department. Annals of 

emergency medicine, 58(5), 452-462. 

17. Bruls, R. J. M., & Kwee, R. M. (2020). Workload 

for radiologists during on-call hours: dramatic 

increase in the past 15 years. Insights into 

imaging, 11, 1-7. 

18. Ruutiainen, A. T., Durand, D. J., Scanlon, M. H., 

& Itri, J. N. (2013). Increased error rates in 

preliminary reports issued by radiology residents 

working more than 10 consecutive hours 

overnight. Academic radiology, 20(3), 305-311. 

19. Hanna, T. N., Shekhani, H., Lamoureux, C., Mar, 

H., Nicola, R., Sliker, C., & Johnson, J. O. (2017). 

Emergency radiology practice patterns: shifts, 

schedules, and job satisfaction. Journal of the 

American College of Radiology, 14(3), 345-352. 

20. Bruno, M. A., Walker, E. A., & Abujudeh, H. H. 

(2015). Understanding and confronting our 

mistakes: the epidemiology of error in radiology 

and strategies for error 

reduction. Radiographics, 35(6), 1668-1676. 

21. Goddard, P., Leslie, A., Jones, A., Wakeley, C., 

& Kabala, J. (2001). Error in radiology. The 

British journal of radiology, 74(886), 949-951. 

22. Pow, R. E., Mello‐Thoms, C., & Brennan, P. 

(2016). Evaluation of the effect of double 

reporting on test accuracy in screening and 

diagnostic imaging studies: a review of the 

evidence. Journal of medical imaging and 

https://www.mediresonline.org/journals/hematology-and-disorders
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K210209
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K210209
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(09)70025-0/fulltext
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(09)70025-0/fulltext
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(09)70025-0/fulltext
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(09)70025-0/fulltext
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(09)70025-0/fulltext
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(09)70025-0/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(13)70089-5/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(13)70089-5/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(13)70089-5/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(13)70089-5/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(13)70089-5/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(13)70089-5/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(13)70089-5/fulltext
https://bmcemergmed.biomedcentral.com/articles/10.1186/1471-227X-12-17
https://bmcemergmed.biomedcentral.com/articles/10.1186/1471-227X-12-17
https://bmcemergmed.biomedcentral.com/articles/10.1186/1471-227X-12-17
https://bmcemergmed.biomedcentral.com/articles/10.1186/1471-227X-12-17
https://bmcemergmed.biomedcentral.com/articles/10.1186/1471-227X-12-17
https://bmcemergmed.biomedcentral.com/articles/10.1186/1471-227X-12-17
https://ccforum.biomedcentral.com/articles/10.1186/cc3779
https://ccforum.biomedcentral.com/articles/10.1186/cc3779
https://ccforum.biomedcentral.com/articles/10.1186/cc3779
https://ccforum.biomedcentral.com/articles/10.1186/cc3779
https://journals.lww.com/headtraumarehab/Fulltext/2010/03000/Screening_and_Identification_of_TBI.00002.aspx
https://journals.lww.com/headtraumarehab/Fulltext/2010/03000/Screening_and_Identification_of_TBI.00002.aspx
https://journals.lww.com/headtraumarehab/Fulltext/2010/03000/Screening_and_Identification_of_TBI.00002.aspx
https://journals.lww.com/headtraumarehab/Fulltext/2010/03000/Screening_and_Identification_of_TBI.00002.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/co-criticalcare/fulltext/2011/04000/The_acute_management_of_intracerebral_hemorrhage.5.aspx
https://journals.lww.com/co-criticalcare/fulltext/2011/04000/The_acute_management_of_intracerebral_hemorrhage.5.aspx
https://journals.lww.com/co-criticalcare/fulltext/2011/04000/The_acute_management_of_intracerebral_hemorrhage.5.aspx
https://journals.lww.com/co-criticalcare/fulltext/2011/04000/The_acute_management_of_intracerebral_hemorrhage.5.aspx
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://www.sciencedirect.com/science/article/pii/S0967586815003963
https://www.sciencedirect.com/science/article/pii/S0967586815003963
https://www.sciencedirect.com/science/article/pii/S0967586815003963
https://www.sciencedirect.com/science/article/pii/S0967586815003963
https://www.sciencedirect.com/science/article/pii/S0967586815003963
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540624/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540624/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540624/
https://www.bmj.com/content/368/bmj.l6983.short
https://www.bmj.com/content/368/bmj.l6983.short
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183924/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183924/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183924/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183924/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183924/
https://www.sciencedirect.com/science/article/pii/S0720048X22000456
https://www.sciencedirect.com/science/article/pii/S0720048X22000456
https://www.sciencedirect.com/science/article/pii/S0720048X22000456
https://www.sciencedirect.com/science/article/pii/S0720048X22000456
https://www.sciencedirect.com/science/article/pii/S0720048X22000456
https://www.sciencedirect.com/science/article/pii/S0720048X22000456
https://www.sciencedirect.com/science/article/pii/S0196064411005130
https://www.sciencedirect.com/science/article/pii/S0196064411005130
https://www.sciencedirect.com/science/article/pii/S0196064411005130
https://www.sciencedirect.com/science/article/pii/S0196064411005130
https://www.sciencedirect.com/science/article/pii/S0196064411005130
https://link.springer.com/article/10.1186/s13244-020-00925-z
https://link.springer.com/article/10.1186/s13244-020-00925-z
https://link.springer.com/article/10.1186/s13244-020-00925-z
https://link.springer.com/article/10.1186/s13244-020-00925-z
https://www.sciencedirect.com/science/article/pii/S1076633212005387
https://www.sciencedirect.com/science/article/pii/S1076633212005387
https://www.sciencedirect.com/science/article/pii/S1076633212005387
https://www.sciencedirect.com/science/article/pii/S1076633212005387
https://www.sciencedirect.com/science/article/pii/S1076633212005387
https://www.sciencedirect.com/science/article/pii/S1546144016309243
https://www.sciencedirect.com/science/article/pii/S1546144016309243
https://www.sciencedirect.com/science/article/pii/S1546144016309243
https://www.sciencedirect.com/science/article/pii/S1546144016309243
https://www.sciencedirect.com/science/article/pii/S1546144016309243
https://pubs.rsna.org/doi/abs/10.1148/rg.2015150023
https://pubs.rsna.org/doi/abs/10.1148/rg.2015150023
https://pubs.rsna.org/doi/abs/10.1148/rg.2015150023
https://pubs.rsna.org/doi/abs/10.1148/rg.2015150023
https://pubs.rsna.org/doi/abs/10.1148/rg.2015150023
https://www.birpublications.org/doi/abs/10.1259/bjr.74.886.740949
https://www.birpublications.org/doi/abs/10.1259/bjr.74.886.740949
https://www.birpublications.org/doi/abs/10.1259/bjr.74.886.740949
https://onlinelibrary.wiley.com/doi/abs/10.1111/1754-9485.12450
https://onlinelibrary.wiley.com/doi/abs/10.1111/1754-9485.12450
https://onlinelibrary.wiley.com/doi/abs/10.1111/1754-9485.12450
https://onlinelibrary.wiley.com/doi/abs/10.1111/1754-9485.12450
https://onlinelibrary.wiley.com/doi/abs/10.1111/1754-9485.12450


 
Hematology and Disorders 

 

How to cite this article: Khen Sela Peremen, Naama Avni, Lilian Atlan, Dor Amran. (2024). Real-World Performance of Ai-Powered Ich Triage System. Journal of Hematology and 

Disorders. 3(1); DOI: 10.58489/2836-3582/010                            Page 13 of 13 

radiation oncology, 60(3), 306-314. 

23. Lauritzen, P. M., Hurlen, P., Sandbæk, G., & 

Gulbrandsen, P. (2015). Double reading rates 

and quality assurance practices in Norwegian 

hospital radiology departments: two parallel 

national surveys. Acta radiologica, 56(1), 78-86. 

24. Elliott, J., & Smith, M. (2010). The acute 

management of intracerebral hemorrhage: a 

clinical review. Anesthesia & Analgesia, 110(5), 

1419-1427. 

25. Kellner, C. P., Schupper, A. J., & Mocco, J. 

(2021). Surgical evacuation of intracerebral 

hemorrhage: the potential importance of 

timing. Stroke, 52(10), 3391-3398. 

26. Jenny, C., Hymel, K. P., Ritzen, A., Reinert, S. E., 

& Hay, T. C. (1999). Analysis of missed cases of 

abusive head trauma. Jama, 281(7), 621-626. 

27. Rao, B., Zohrabian, V., Cedeno, P., Saha, A., 

Pahade, J., & Davis, M. A. (2021). Utility of 

artificial intelligence tool as a prospective 

radiology peer reviewer—Detection of 

unreported intracranial hemorrhage. Academic 

radiology, 28(1), 85-93. 

28. Hawkins, D. M. (2004). The problem of 

overfitting. Journal of chemical information and 

computer sciences, 44(1), 1-12. 

29. Matsoukas, S., Chennareddy, S., Kalagara, R., 

Scaggiante, J., Smith, C. J., Bazil, M. J., ... & 

Kellner, C. P. (2022). Pilot deployment of viz–

intracranial hemorrhage for intracranial 

hemorrhage detection: real-world performance in 

a stroke code cohort. Stroke, 53(9), e418-e419. 

30. Wismüller, A., & Stockmaster, L. (2020, 

February). A prospective randomized clinical trial 

for measuring radiology study reporting time on 

Artificial Intelligence-based detection of 

intracranial hemorrhage in emergent care head 

CT. In Medical Imaging 2020: Biomedical 

Applications in Molecular, Structural, and 

Functional Imaging (Vol. 11317, pp. 144-150). 

SPIE. 

31. Renedo, D., Acosta, J. N., Leasure, A. C., 

Sharma, R., Krumholz, H. M., de Havenon, A., ... 

& Sheth, K. N. Burden of Ischemic and 

Hemorrhagic Stroke Across the US From 1990 to 

2019. JAMA neurology. 

32. https://www.census.gov/newsroom/press-

releases/2019/popest-nation.html 

33. Korja, M., Lehto, H., Juvela, S., & Kaprio, J. 

(2016). Incidence of subarachnoid hemorrhage is 

decreasing together with decreasing smoking 

rates. Neurology, 87(11), 1118-1123. 

34. Linn, F. H. H., Rinkel, G. J. E., Algra, A., & Van 

Gijn, J. (1996). Incidence of subarachnoid 

hemorrhage: role of region, year, and rate of 

computed tomography: a meta-

analysis. Stroke, 27(4), 625-629. 

35. Rincon, F., & Mayer, S. A. (2013). The 

epidemiology of intracerebral hemorrhage in the 

United States from 1979 to 2008. Neurocritical 

care, 19, 95-102. 

36. An, S. J., Kim, T. J., & Yoon, B. W. (2017). 

Epidemiology, risk factors, and clinical features of 

intracerebral hemorrhage: an update. Journal of 

stroke, 19(1), 3. 

37. Wang, S., Zou, X. L., Wu, L. X., Zhou, H. F., Xiao, 

L., Yao, T., ... & Zhang, L. (2022). Epidemiology 

of intracerebral hemorrhage: A systematic review 

and meta-analysis. Frontiers in Neurology, 13, 

915813. 

38. Li, Q., Li, R., Zhao, L. B., Yang, X. M., Yang, W. 

S., Deng, L., ... & Xie, P. (2020). Intraventricular 

hemorrhage growth: definition, prevalence and 

association with hematoma expansion and 

prognosis. Neurocritical Care, 33, 732-739. 

39. Tenny S, Thorell W. Intracranial Hemorrhage. 

[Updated 2023 Feb 13]. In: StatPearls [Internet]. 

Treasure Island (FL): StatPearls Publishing; 2023 

Jan-. Available from: 

https://www.ncbi.nlm.nih.gov/books/NBK470242

/ 

https://www.mediresonline.org/journals/hematology-and-disorders
https://onlinelibrary.wiley.com/doi/abs/10.1111/1754-9485.12450
https://journals.sagepub.com/doi/abs/10.1177/0284185113519988
https://journals.sagepub.com/doi/abs/10.1177/0284185113519988
https://journals.sagepub.com/doi/abs/10.1177/0284185113519988
https://journals.sagepub.com/doi/abs/10.1177/0284185113519988
https://journals.sagepub.com/doi/abs/10.1177/0284185113519988
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://journals.lww.com/anesthesia-analgesia/fulltext/2010/05000/the_acute_management_of_intracerebral_hemorrhage_.28.aspx
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.032238
https://jamanetwork.com/journals/jama/article-abstract/188786
https://jamanetwork.com/journals/jama/article-abstract/188786
https://jamanetwork.com/journals/jama/article-abstract/188786
https://www.sciencedirect.com/science/article/pii/S1076633220300842
https://www.sciencedirect.com/science/article/pii/S1076633220300842
https://www.sciencedirect.com/science/article/pii/S1076633220300842
https://www.sciencedirect.com/science/article/pii/S1076633220300842
https://www.sciencedirect.com/science/article/pii/S1076633220300842
https://www.sciencedirect.com/science/article/pii/S1076633220300842
https://pubs.acs.org/doi/full/10.1021/ci0342472
https://pubs.acs.org/doi/full/10.1021/ci0342472
https://pubs.acs.org/doi/full/10.1021/ci0342472
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.122.039711
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.122.039711
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.122.039711
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.122.039711
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.122.039711
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.122.039711
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2552400/A-prospective-randomized-clinical-trial-for-measuring-radiology-study-reporting/10.1117/12.2552400.short
https://jamanetwork.com/journals/jamaneurology/article-abstract/2815830
https://jamanetwork.com/journals/jamaneurology/article-abstract/2815830
https://jamanetwork.com/journals/jamaneurology/article-abstract/2815830
https://jamanetwork.com/journals/jamaneurology/article-abstract/2815830
https://jamanetwork.com/journals/jamaneurology/article-abstract/2815830
https://www.census.gov/newsroom/press-releases/2019/popest-nation.html
https://www.census.gov/newsroom/press-releases/2019/popest-nation.html
https://www.neurology.org/doi/abs/10.1212/wnl.0000000000003091
https://www.neurology.org/doi/abs/10.1212/wnl.0000000000003091
https://www.neurology.org/doi/abs/10.1212/wnl.0000000000003091
https://www.neurology.org/doi/abs/10.1212/wnl.0000000000003091
https://www.ahajournals.org/doi/abs/10.1161/01.STR.27.4.625
https://www.ahajournals.org/doi/abs/10.1161/01.STR.27.4.625
https://www.ahajournals.org/doi/abs/10.1161/01.STR.27.4.625
https://www.ahajournals.org/doi/abs/10.1161/01.STR.27.4.625
https://www.ahajournals.org/doi/abs/10.1161/01.STR.27.4.625
https://link.springer.com/article/10.1007/s12028-012-9793-y
https://link.springer.com/article/10.1007/s12028-012-9793-y
https://link.springer.com/article/10.1007/s12028-012-9793-y
https://link.springer.com/article/10.1007/s12028-012-9793-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307940/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307940/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307940/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307940/
https://www.frontiersin.org/articles/10.3389/fneur.2022.915813/full
https://www.frontiersin.org/articles/10.3389/fneur.2022.915813/full
https://www.frontiersin.org/articles/10.3389/fneur.2022.915813/full
https://www.frontiersin.org/articles/10.3389/fneur.2022.915813/full
https://www.frontiersin.org/articles/10.3389/fneur.2022.915813/full
https://link.springer.com/article/10.1007/s12028-020-00958-8
https://link.springer.com/article/10.1007/s12028-020-00958-8
https://link.springer.com/article/10.1007/s12028-020-00958-8
https://link.springer.com/article/10.1007/s12028-020-00958-8
https://link.springer.com/article/10.1007/s12028-020-00958-8
http://www.ncbi.nlm.nih.gov/books/NBK470242/
http://www.ncbi.nlm.nih.gov/books/NBK470242/

