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Introduction  

In clinical trials, one important type of treatment 

outcome is binary response indicating whether a 

subject has a favorable outcome or unfavorable 

outcome, often conveniently denoted by 1 and 0 

respectively. Let 𝑝𝑇 and 𝑝𝑅  be the binary response 

rates of the test and reference products respectively. 

For a new test drug proposed as a generic to a 

marketed reference product, one of the critical 

requirements for regulatory approval is to establish 

the equivalence between 𝑝𝑇 and 𝑝𝑅, which is often 

assessed via some form of equivalence test. 

A common form of equivalence test is focused on the 

difference between the two response rates and is 

formulated as below, 

𝐻0: |𝑝𝑇 − 𝑝𝑅| ≥ δ versus 𝐻𝑎: |𝑝𝑇 − 𝑝𝑅| < 𝛿             (1) 

where 𝛿 >  0 is referred to as the equivalence margin. 

The equivalence test can also be reformulated as the 

following two one-sided tests (TOST), 

𝐻10: 𝑝𝑇 − 𝑝𝑅 ≤ −𝛿 versus 𝐻1𝑎: 𝑝𝑇 − 𝑝𝑅 > 𝛿 (2) 

and 

𝐻20: 𝑝𝑇 − 𝑝𝑅 ≥ δ versus 𝐻2𝑎: 𝑝𝑇 − 𝑝𝑅 < 𝛿.  (3) 

The hypothesis test in Eq. (2) is often presented as a 

non-inferiority (NI) test. An FDA guidance for industry 

recommends that the NI test be performed with a test 

size of 2.5% when it is used to establish effectiveness 

(FDA, 2016). For the case of equivalence test, it is 

generally accepted that both null hypotheses H10 and 

H20 be rejected at the type I error rate of 5% to 

achieve an overall 5% test size. 

Regulatory authorities may predetermine a fixed 

constant margin 𝛿 for a particular drug product or a 

category of drug products. An FDA guidance for 

industry (FDA, 2003) recommends that 

bioequivalence be established with clinical endpoints 

for drugs with low absorption in blood system. A 

clinical trial of generic drug bioequivalence 

assessment typically consists of three arms, i.e., 

placebo (B), test (T), and reference (R) treatments. 

The investigator needs to compare test with placebo 
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for efficacy, using the following hypotheses, 

𝐻0: 𝑝𝑇 − 𝑝𝐵 ≤ 0 versus 𝐻𝑎: 𝑝𝑇 − 𝑝𝐵 > 0, 

and to compare reference with placebo to show 

validation in the study population with the following 

hypotheses, 

𝐻0: 𝑝𝑅 − 𝑝𝐵 ≤ 0 versus 𝐻𝑎: 𝑝𝑅 − 𝑝𝐵 > 0. 

Both null hypotheses should be rejected with 2.5% 

type I error rate before testing for bioequivalence with 

the hypotheses in Eq (2) and (3) with 𝛿 =  0.2. 

This fixed margin can lead to some difficulties. The 

variance of the sample response rate is a function of 

the response rate. Therefore, when the response rate 

is close to 0 or 1, the variance is smaller, and the 

equivalence test enjoys a higher power than the case 

when the response rate is close to 0.5. In fact, the 

sample size required with a fixed margin can increase 

up to a magnitude of 2.7 when the true response rates 

vary from 0.1 or 0.9 to 0.5, assuming equal response 

rates and equal sample sizes for test and reference 

treatments (see Eq. 4.2.4 (Chow, Wang, and Shao, 

Chow et al.)). In addition, Yuan et al. (2018) 

discussed the power and sample size determination 

in bioequivalence test of binary endpoints in generic 

drug applications with a fixed margin of 𝛿 = 20%, 

using the same sample size, for the same size of 

difference, 𝑝𝑇 − 𝑝𝑅, and showed that the power of 

bioequivalence test depends heavily on the reference 

response rate.   It is of interest to drug developers to 

keep sample sizes small to reduce cost and also to 

regulatory authorities as not to increase unnecessary 

burden to drug developers. It may be impractical to 

calculate sample size needed by assuming the worst-

case scenario of both response rates equal to 0.5. 

In a recent discussion (Ren et al., 2019) for NI test, 

several common margin choices were compared, 

such as fixed margin (Tsong, 2007; FDA, 2016), 

variable margins which are functions of 𝑝𝑅, i.e., 𝛿 =

𝛿(𝑝𝑅), including step-wise constant margin (FDA, 

1992; Röhmel, 1998), and smooth margins (Röhmel, 

2001).  It was also noted that the reference response 

rate in the smooth margin was considered to be 

deterministic by Röhmel (2001). In addition, there 

was also a comprehensive discussion for NI test with 

a variable margin (Zhang, 2006). 

Step-wise constant margins have also been used in 

recent studies. To design a proper immunogenicity 

study of an insulin biosimilar drug product, a constant 

margin determined by a step function with a 

maximum sample size of 500 patients was used in 

Wang (2018), which is reproduced in Table 1. 

Table 1: A step function to determine margin, reproduced from 

Wang (2018). 

ADA Rate of Reference 
Product (%) 

Margin (%) 

5 5.70 

10 7.90 

15 9.30 

20 10.50 

25 11.30 

30 12.00 

35 12.50 

40 12.80 

45 13.00 

50 13.10 

55 13.00 

60 12.80 

  

In this paper, we extend the smooth variable margin 

originally proposed for NI test (Ren et al., 2019) to the 

two-sided equivalence test. Although there are some 

similarities between the equivalence test and NI test, 

we found some features unseen for the case of the 

one-sided NI test. For instance, the rejection rate of 

the equivalence test is nearly zero when both sample 

size and margin multiplier is small, regardless the 

values of 𝑝𝑇 and 𝑝𝑅. 

The paper is organized as follows. A formal 

discussion of the problem and test statistics are 

presented in Section 2. Section 3 reports simulation 

studies. Section 4 concludes the paper with additional 

discussion. More technical details are deferred to the 

Appendix. 

Materials And Methods 

FDA recommends to use the reference scaled average bioequivalence test for products with large variability 

(FDA, 2001, 2011; Tothfalusi and Endrenyi, 2016). The test can be stated as below, 

𝐻0: (𝜇𝑇 − 𝜇𝑅)/𝜎𝑅 ≤ −𝛿 𝑜𝑟 (𝜇𝑇 − 𝜇𝑅)/𝜎𝑅 ≥ 𝛿 versus 𝐻𝑎: −𝛿 < (𝜇𝑇 − 𝜇𝑅)/𝜎𝑅 < 𝛿  (4) 

where  𝜇𝑇 and 𝜇𝑅 are the means of test and reference respectively; 𝜎𝑅 is the standard deviation of reference 

product; 𝛿 is the pre-specified equivalence margin. This hypothesis can also be presented as follow, 

𝐻0: 𝜇𝑇 − 𝜇𝑅 ≤ −𝛿𝜎𝑅  𝑜𝑟 𝜇𝑇 − 𝜇𝑅 ≥ 𝛿𝜎𝑅 versus 𝐻𝑎 : −𝜎𝛿𝑅 < 𝜇𝑇 − 𝜇𝑅 < 𝜎𝜎𝑅.   (5) 

 

For binary data, the test can be presented as follow, 
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𝐻0: 𝑝𝑇 − 𝑝𝑅 ≤ −δ(𝑝𝑅) or 𝑝𝑇 − 𝑝𝑅 ≥ 𝛿(𝑝𝑅) versus 𝐻𝑎 : −δ(𝑝𝑅) < 𝑝𝑇 − 𝑝𝑅 < 𝛿(𝑝𝑅)    (6) 

where 𝑝𝑇 and 𝑝𝑅 are the response rates of test and reference respectively; 𝛿(𝑝𝑅) is the equivalence margin 

represented by 𝑘√𝑝𝑅(1 − 𝑝𝑅). 

Test statistics 

Let (𝑋𝐼,𝑖)𝑖=1

𝑛𝐼
be the observed responses for product 

𝐼 =  𝑇, 𝑅. Throughout, it is assumed that 𝑋𝐼,𝑖 ∼𝑖𝑖𝑑  

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐼) and the two samples (𝑋𝑇,𝑖)𝑖=1

𝑛𝑇
 and 

(𝑋𝑅,𝑖)𝑖=1

𝑛𝑅
 are mutually independent. Let 𝑝�̂� = ∑ 𝑋𝐼,𝑖𝑖 /𝑛𝐼 

be the sample estimate of the response rate for 𝑝𝐼 𝐼 =

 𝑇, 𝑅.  

In the following discussion, we use the margin 

function originally proposed by (Ren et al., 2019), 

which is a multiple of the standard deviation of sample 

estimate for 𝑝𝑅, 

𝛿(𝑝𝑅) = 𝑘√𝑝𝑅(1 − 𝑝𝑅)    (7) 

where 𝑘 >  0 is referred to as the margin multiplier, 

the selection of which will be discussed later. 

We consider the following Wald type test statistics for 

equivalence test, 

 

Let 

 

then 𝑇1 and 𝑇2 can be written as follows, 

 

Three methods for calculating the variances, 

var (�̂�𝑇 − 𝑓𝑗(�̂�𝑅)) , 𝑗 = 1,2, were discussed 

and compared based on asymptotic normal 

approximation previously (Ren et al., 2019). For the 

purpose of benchmarking the performance, the same 

methods are used here. 

The first method ignores the margin variability, which 

gives a naive version of the variance and is frequently 

used in practice, 

 

The second and third methods take into account the 

margin variability but differ in the response rates at 

which they are evaluated. Since √𝑛𝑅(�̂�𝑅 −

𝑝𝑅) →𝑑 𝑁(0, 𝑝𝑅(1 − 𝑝𝑅)), by the delta method, it 

follows that 

 

For a null hypothesis Hi0, i = 1, 2, let �̌�𝑖,𝑇  and �̌�𝑖,𝑅  be 

the restricted maximum likelihood estimates of 𝑝𝑇 and 

𝑝𝑅 respectively, restricted at the boundary of Hi0, i.e., 

𝑝𝑇 − 𝑝𝑅 = (−1)𝑖𝛿(𝑝𝑅). Then the three test statistics 
are defined below. 

1. Plugging �̂�𝑇 and �̂�𝑅  into ν1, we have 

 

2. Plugging �̌�𝑖,𝑇 and �̌�𝑖,𝑅  to ν1, we have 

 

3. Plugging �̌�𝑖,𝑇 and �̌�𝑖,𝑅 to νi,2, we have 

 

The distributions of the three test statistics 𝑇𝑖,𝐼  for  

𝐼  =   𝑀𝑊𝑂, 𝑅𝑊𝑂, 𝑅𝑊  at  the finite boundary of Hi0 

can be approximated by the standard normal 

distribution. Let 𝑍1−𝛼 denote the (1 − 𝛼)-quantile of 

the standard normal distribution, then the null 

hypothesis H10 is rejected if 𝑇1,𝐼 > 𝑍1−𝛼 and H20 is 

rejected if 𝑇2,𝐼 < −𝑍1−𝛼. The null hypothesis of 

equivalence test H0 is rejected if and only if both H10 

and H20 are rejected. 

Power function 

Both 𝑇1,𝑀𝑊𝑂 and 𝑇1,𝑅𝑊𝑂 were shown to control type I 

error considerably inferior to 𝑇1,𝑅𝑊 for NI test (Ren et 

al., 2019). This is also true for 𝑇𝑀𝑊𝑂 and 𝑇𝑅𝑀𝑂 

compared with 𝑇𝑅𝑊 for equivalence test, which can be 

seen in the simulation studies reported later in this 

paper. Thus, only the power function of 𝑇𝑅𝑊 is 

considered here. 

Assume that there exist some �̅�𝑖,𝑇 and �̅�𝑖,𝑅 such that 

�̌�𝑖,𝑇 → �̅�𝑖,𝑇 and �̌�𝑖,𝑅 → �̅�𝑖,𝑅   in probability.  Further 
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assume that 𝑝𝑇 − 𝑝𝑅 = 𝑘0√𝑝𝑅(1 − 𝑝𝑅). Then the 

approximate power functions can be given as below 

(more details can be found in the Appendix), 

 

where 

 

𝑗 =  1, 2, and (𝑍1, 𝑍2) is a random vector with an 

asymptotic bivariate normal distribution, each 

following the standard normal distribution with 

asymptotic correlation given by 

 

Then the power function can be given approximately 

by the probability of a bivariate normal distribution 

over a region defined by Eq. (15), which can be 

calculated numerically by the pmvnorm function in the 

R package mvtnorm (Genz et al., 2018; Genz and 

Bretz, 2009). 

The selection of the margin multiplier k 

Two methods can be used to determine 𝑘 based on 

the sample size of the study (Ren et al., 2019). The 

first method is intended to be used for large sample 

studies, and the second for small sample studies. 

First, we note that for a constant 𝑘, when 𝑝𝑅 <
𝑘2

1+𝑘2 

then 𝑝𝑅 − 𝑘√𝑝𝑅(1 − 𝑝𝑅) < 0, and thus H10 is always 

rejected since 𝑝𝑇 ≥ 0 is a probability. Similarly, if 𝑝𝑅 >
1

1+𝑘2, then 𝑝𝑅 + 𝑘√𝑝𝑅(1 − 𝑝𝑅) > 1, and thus H20 is 

always rejected. 

For studies with large sample sizes, 𝑘 may be 

selected so that the variable margin is similar to 

margins used in previous studies. As an example, for 

the biosimilar immunogenicity trial of insulin product 

in Wang (2018), which has at least 250 per arm, we 

match the step-function margin with our variable 

margin at 𝑝𝑅 = 0.5, 

 

Solving Eq. (16) for 𝑘, then we have 𝑘 = 0.262 and 

margin function 𝛿(𝑝𝑅) = 0.262√𝑝𝑅(1 − 𝑝𝑅). In fact, 

the margin function agrees with the step function at 

the thresholds. 

For small sample studies, setting 𝑘 = 0.262 may 

render the test of little power. Simulation studies 

reported below showed that when 𝑛𝑇 = 𝑛𝑅 = 50 the 

equivalence test cannot reject 𝐻0 for any combination 

of 𝑝𝑇 and 𝑝𝑅. However, there are practical situations 

where it is impractical to obtain relevant large sample 

sizes, while sufficient power is still needed. In this 

regard, one may choose 𝑘 for a test statistic by setting 

the power function in Eq. (15) to be 1 −  𝛽 and solve 

for 𝑘 for some presumed 𝑝𝑇 and 𝑝𝑅. The solved 𝑘 is 

implicitly also a function of 𝑝𝑇, 𝑝𝑅 and the sample 

sizes. To facilitate the discussion, we consider the 

case when both test and reference response rates 

are the same, i.e., 𝑝𝑇 = 𝑝𝑅 = 𝑝, so that the 

equivalence test has the maximum power, and the 

sample sizes 𝑛𝑇 = 𝑛𝑅 = 𝑛. 

For the power function in Eq (15), the main difficulty 

lies in the unknown �̅�𝑇   and �̅�𝑅   and their dependency 

with 𝑘.  Because no explicit formulas of �̅�𝑇  and �̅�𝑅   

are available, we estimate it by bootstrap for any 

given 𝑘. Then 𝑘 is solved by the R function uniroot in 

the stats package (R Core Team, 2017). 

Assuming 𝛼 = 0.05, 𝛽 = 0.1, i.e., 90% power, and n = 

50, 100, 150, the calculated margin multipliers for 𝑇𝑅𝑊 

are illustrated in Fig.  1.  Except when 𝑝 is very small, 

the margin multiplier 𝑘 seems to be symmetric at 𝑝 =

 0.5 and an increasing function with respect to 

|𝑝 − 0.5|. Note that when 𝑛 =  50, very large 𝑘 is 

required to obtain the prespecified power. A large 𝑘 

can result in trivial lower bound 𝑝𝑅 − 𝑘𝑝𝑅(1 − 𝑝𝑅) or 

upper bound 𝑝𝑅 + 𝑘𝑝𝑅(1 − 𝑝𝑅) and this is more often 

as 𝑘 increases. The induced margins are shown in 

Fig. 2. Interestingly, the induced margin curves are 

rather flat for a given sample size except when 𝑝𝑅 is 

close to 0 or 1. For 𝑛 =  50, the margin ranges from 

0.315 to 0.341, excluding the margins for 𝑝𝑅 = 0.05 

and 𝑝𝑅 = 0.95. The margin ranges from 0.18 to 0.236 

for n = 100 and from 0.122 to 0.192 for n = 150. 
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Fig 1: Plot of margin multiplier as a function of 𝑝 to obtain a constant power of 90% and type I error 5% with 𝑝𝑇 = 𝑝𝑅 = 𝑝  

and 𝑛𝑇 = 𝑛𝑅 = 50. 

 

Fig 2: Plot of the variable margin to obtain a constant power of 90% and type I error 5% with 𝑝𝑇 = 𝑝𝑅 = 𝑝  and 𝑛𝑇 = 𝑛𝑅 =
50, 100, 150. 

Results 

Empirical type I error 

Here we report a simulation study of the empirical 

type I error of the three test statistics in large sample 

studies with 𝑘 =  0.262. We assume equal sample 

size for both arms, and consider a variety of sample 
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δ 

sizes, 𝑛𝑇 = 𝑛𝑅 = 50, 100, ···, 500 and the true 

reference probability 𝑝𝑅 = 0.1, 0.2, ···, 0.9. For each 

𝑝𝑅, the margin and true 𝑝𝑇 are given by 𝛿(𝑝𝑅) =

𝑘𝑝𝑅(1 − 𝑝𝑅) and 𝑝𝑇 = 𝑝𝑅 − 𝛿(𝑝𝑅) respectively.  For 

given sample size and true response rates, the test 

and reference data are simulated by 𝑋𝐼,𝑖 ∼

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐼) for 𝑖 = 1, ···, 𝑛𝐼, and 𝐼 =  𝑇, 𝑅. Three 

equivalence tests based on test statistics TRWO, TMWO, 

and TRW are performed for each simulated sample at 

a nominal level of 𝛼 =  0.05. The simulation study is 

replicated for 106 times. 

The performances of the three tests are similar when 

sample sizes changes, so only empirical rejection 

rates (ERR) (type I errors) for TRWO, TMWO, and TRW 

and theoretical rejection rates (TRR) for TRW are 

reported in Figure 3 for the case when 𝑛𝑇 = 𝑛𝑅 = 50, 

100, 150, 200, 250, 500. When sample size is 50, all 

tests have almost zero rejection rate, regardless the 

true reference probability. This is due to the small 

sample size and the small 𝑘 value. When sample size 

is 100, the rejection rates are around 0.03. Note that 

the theoretical rejection rate for TRW is also close to 

0.03. The rejection rates for sample sizes at least 150 

are similar across different sample sizes, showing 

that both TRWO and TMWO have seriously bias in type I 

error, compared with TRW for which both the empirical 

type I error and theoretical approximations are much 

closer to the nominal 0.05 level. 

The evident trends in ERR for TRWO and TMWO are 

mainly due to the variance estimates ignoring the 

variability in the margin. The uprising trend cross the 

0.05 nominal size at 𝑝𝑅 = 0.5 may be explained 

below. First note that the simulation study is set at the 

lower boundary 𝑝𝑇 − 𝑝𝑅 = −𝛿. Thus, the sample 

estimate �̂�𝐼 is close to the RMLE �̌�𝑖,𝐼, both of which 

are consistent estimators of 𝑝𝐼 for 𝐼 =  𝑇, 𝑅. This is 

the reason for the comparable rejection rates of TRWO 

and TMWO. Also, H2,0 is almost always rejected. So the 

type I error of the equivalence test is close to the 

rejection rate of H1,0. For this selected 𝑘 and any 

�̌�𝑖,𝑅 <  1/2, ν1(�̌�𝑖,𝑇 , �̌�𝑖,𝑅 ) > ν1,2(�̌�𝑖,𝑇 , �̌�𝑖,𝑅 ), implying 

T1,RWO < T1,RW  and thus T1,RWO rejects H1,0 less 

frequently than T1,RW. 

Additional simulation study conducted with 𝑝𝑇 = 𝑝𝑅 +

𝛿(𝑝𝑅) unreported here shows a mirrored pattern for 

TMWO and TRWO, of which downward trends were 

observed for type I error. 

Empirical power of TRW 

Due to the inferior performance of TMWO and TRWO in 

controlling type I error, only TRW is considered in the 

power study. The simulation settings for power 

function of large sample studies are similar to those 

in Section 3.1. For any 𝑝𝑇 ∈ [𝑝𝑅 − 𝛿, 𝑝𝑅 + 𝛿], its 

deviation from H0 can be measured by  ∆= (𝑝𝑇 −

𝑝𝑅)/δ ∈ [−1, 1], interpreted as the signed distance 

between the test probability 𝑝𝑇 and 𝑝𝑅 standardized 

by 𝛿. The reference probability 𝑝𝑅 is from 0.1 to 0.9 

with increment of 0.1. For each 𝑝𝑅, we consider a 

series of 𝑝𝑇 ’s with the corresponding ∆ from −1 to 1 

with an increasement of 0.25. In particular, ∆ = ±1 

implies that the test response rate is at the H0 

boundary and ∆ = 0 implies that the test and reference 

response rates are identical. 

The simulation results are illustrated in Fig. 4. The 

power for 𝑛 =  50 is virtually 0 for all combinations of 

true test and reference probability. This is likely to be 

due to the small 𝑘 value and sample size. For a fixed 

𝑝𝑅, the power in general increases as sample size 

increases and 𝑝𝑇 is closer to 𝑝𝑅. However, the power 

curves seem to be asymmetric at ∆ = 0, which is due 

to the variance components of the margin variability 

and unseen for equivalence test with a fixed margin. 

The only case for a symmetric power curve is when 

𝑝𝑅 = 0.5.  For p ≠ 0.5, the power curves for 𝑝𝑅 =  𝑝 

appears to be the power curves for 𝑝𝑅 =1 − 𝑝 flipped 

at ∆ = 0. 

Verification of margin multiplier k for a 

prespecified power 

Here we verify the calculation of margin multiplier 𝑘 

for TRW. The data are simulated with 𝑝𝑇 = 𝑝𝑅 = 𝑝 and 

𝑛 = 𝑛𝑇 = 𝑛𝑅 = 50, 100, 150 with 𝑝 =  0.05, 0.1, ···

, 0.90. For each 𝑛 and each 𝑝, two sets of simulations 

are performed. In the first set, the test is performed 

with the 𝑘 calculated with a target of 90% power and 

true 𝑝 with given 𝑛. In the second set, the test is 

performed with the previously computed 𝑘 which 

yields 90% power for 𝑝𝑇 = 𝑝𝑅 = 0.5, 
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Fig 3: The empirical and theoretical rejection rates for equivalence tests. 
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Fig 4: The empirical and theoretical power functions for TRW with 𝑘 =  0.262. The empirical rejection rates are illustrated by 

lines with solid circles and the theoretical rejection rates by lines only. The results for different sample sizes are shown in 

different lines. regardless the true 𝑝 = 𝑝𝑇 = 𝑝𝑅. The empirical powers are based on 105 replications and illustrated in Fig. 5. 

For the tests computed with the 𝑘 calculated with true 𝑝, the empirical powers very close to 0.9. When a fixed 𝑘 is used in 

the test, the empirical power decreases as 𝑝 deviates from 0.5, which is more evident for 𝑛 =  50 but less so for 𝑛 =  100 

and 𝑛 =  150, due to the fact that the 𝑘 values are more stable for relatively large sample sizes (cf. Fig. 1). 
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Fig 5: Plot of empirical rejection rates (power) of TRW for true response rate 𝑝 with the corresponding 𝑘 targeting power 90% 

(black lines) and the empirical power for different 𝑝 tested with 𝑘 fixed at the value which yields 90% power for 𝑝 =  0.5 (grey 

lines). 

Discussion 

In this paper we extended the discussion of 

comparison of binary test and reference responses 

with a variable margin in the form of reference scaled 

difference in means from NI test (Ren et al., 2019) to 

equivalence test. Three test statistics were studied 

and both theoretical discussion and simulation 

studies showed that the variability in the margin 

should be taken into account to construct proper test 

statistics so 𝑇𝑅𝑊 is recommended. The type I error of 

𝑇𝑅𝑊 is closer to the nominal size for 𝑝𝑅 close to 1 than 

𝑝𝑅 close to 0. Our calculation of the margin multiplier 

showed that when a fixed power is desired, the 

margin does not vary much as the reference 

response rate changes. Simulation studies showed 

that small margin multiplier may result in zero 

rejection rates so sufficiently large sample size should 

be maintained to achieve proper control of type I error 

and desired power as the weakness of two one-sided 

tests. 
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Appendix 

For TRW, the power function is 

 

There is no deterministic order between the random variables 𝑍1 and 𝑍2. Both have asymptotic standard normal 

distribution with asymptotic correlation given by 

 

Then the power function can be given approximated by the probability in the last display, which is a probability 

of a bivariate normal distribution over a region, can be calculated by the function pmvnorm of the R package 

mvtnorm (Genz et al., 2018; Genz and Bretz, 2009). 
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