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Introduction 

Vestibular sensory function provides conscious and 

subconscious information about linear and angular 

body accelerations, head tilt, compensatory eye 

movements, gravity, postural equilibrium, and spatial 

orientation (1-5). Vestibular inputs supply the 

vestibulospinal and the vestibuloocular reflexes (6-7). 

The signals from type 1 and type 2 hair cells of the 

five vestibular sensory organs including the otoliths 

(utricle and saccule) and the three semicircular 

canals modulate also other neural pathways. These 

pathways extend from the medulla to the cortex (8-

10). The so-called vestibular cortex does not apply to 

a specific anatomic location and its concept is a 

cortical neural network that has extensive 

connections among the frontal, temporal, occipital, 

and parietal cortices. The vestibular cortex works bi-

directionally with subcortical centers in the limbic 

system and brain stem (11-13).  

Discharges of autonomic sensory afferent and 

autonomic motor efferent fibers are directly/indirectly 

modulated by vestibular signals.  The first and the 

most well-known example of this interaction is the 

motion sickness. (14-16) However, unlike motion 

sickness which is due to discrepancies between 

movement-induced vestibular signals and visual 

sense of the same movement, in normal hemostasis, 

the best concordant  example of the vestibulo-

autonomic interaction may be the blood pressure 

control during orthostasis (17-19). The etymology of 

orthostasis consists of ortho and stasis which means 

vertical and stability respectively. However, 

orthostasis is ordinarily used for orthostatic 

hypotension (20-24). 

The effect of gravity on blood volume redistribution 

during the transition from supine to sitting or standing 

positions (or from sitting to standing) must rapidly be 

compensated. This prompt and neurally mediated 
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hemodynamic adjustment will be started through the 

fast, predictive, and anticipatory feed-forward 

mechanism because the closed feedback loop needs 

an error signal and this innate delay is unable to 

compensate for orthostatic changes in nearly the 

same time window of orthostasis. Indeed the 

feedback control comes into the act after the open-

loop feed-forward control to complete the orthostasis 

hemodynamic compensations (25-28).  

Blood pressure is one of the most important vital 

signs. Increase or decrease in systolic, diastolic, 

mean, and pulse pressure and also the dynamic 

changes of blood pressure in orthostasis that can be 

in the form of orthostatic hypotension (OH) or 

orthostatic hypertension (OHT) are clinically 

important in diagnosis, treatment, and prognosis of 

patients (29-31). Almost immediately after changing 

the position from lying down to standing, 500 ml of 

blood is transferred from the thoracic vessels to the 

subdiaphragmatic veins. This reduction in the blood 

volume in the thoracic vessels reduces the preload of 

the ventricles and stroke volume, leading to a 

decrease in arterial blood pressure if there are no 

compensatory responses. Compensatory reactions 

usually provide sufficient compensation 

simultaneously or in less than a minute and prevent 

pressure drop (32). 

Intolerance of the standing position because of the 

autonomic system disorder is called orthostatic 

intolerance and includes three disorders orthostatic 

hypotension, postural tachycardia syndrome, and 

reflex syncope. Orthostatic hypotension has two 

forms: primary and secondary, each with acute and 

chronic forms (33). Orthostatic hypotension is a 

common phenomenon, and it is classified into three 

different types: classical, delayed, and initial 

orthostatic hypotension, according to the time of its 

occurrence and its duration (34-35). 

Recent evidences indicated vestibular feed-forward 

control of blood pressure during orthostasis. The 

vestibular system as an orthostasis sensory detector 

is one of the input sources for cardiovascular reflexes 

and acts through sympathetic activation. This study 

aimed to discuss the clinical significance of vestibular 

hemodynamic adjustment and the consequences of 

its dysfunction in orthostasis and include the following 

topics: hemodynamic changes in orthostasis, 

vestibular neural connections, vestibular modulation 

of autonomic discharges, and cardiovascular 

consequences of vestibular dysfunction. 

Hemodynamic changes in orthostasis 

Orthostasis is a frequent daily activity and causes a 

gravity-induced volume shift in the vasculature and 

transient venous pooling of blood in the lower 

extremities. The subsequent unloading of high and 

low-pressure baroreceptors decreases their afferent 

firing discharges which results in the escape of 

sympathetic efferent from their inhibitory effects (36).  

The enhanced sympathetic tone keeps the central 

volume and blood pressure in the normal 

physiological range by increasing the total peripheral 

resistance, effective circulatory volume, and heart 

performance (lusitropy, bathmotropy, dromotropy, 

chronotropy, inotropy) and decreasing vascular 

compliance (37-41).  The pooling volume ranges 

between 300 to 800 mL; on average, it is considered 

500 mL in an adult person (21, 32). Other physiologic 

responses to central hypovolemia include muscle 

pumps and reverse delayed compliance, but their 

efficiencies and speeds are not important in general 

orthostasis hemodynamic adjustment. They are 

limited to specific vascular beds (42). Orthostatic 

hypotension and orthostatic hypertension are 

representations of inadequate and exaggerated 

sympathetic reflexes to orthostasis respectively (29, 

43). However, the pathogenesis and predisposing 

factors to orthostatic hypertension are not well 

documented and other factors like impaired 

Baroreflex and vascular dysfunctions may also be 

important (44).    

Vestibular neural connections 

The vestibular sensory system has some unique 

properties and is different from other sensory systems 

(45). Laterality, multimodality, multi-sensory 

integrations, viscera-somatic connections, structural 

corticocortical networks, and hierarchical bidirectional 

communication between lower-level (caudal) and 

higher-level (rostral) brain regions cause the link of 

the vestibular system to a wide higher central nervous 

system functions (1, 10-11, 46-51).  Recent evidence 

highlights the effect of normal vestibular inputs on 

cognition and also the consequence of vestibular 

dysfunction on cognition impairment (8, 52-56). There 

are many reports about the relation of vestibular 

function with sleep (57-61). These wide central 

vestibular networks trivialize the traditional and 

anatomical basis for differentiating central versus 

peripheral vestibular disorders (45).  In the classic 

anatomic view, the vestibular cortex is limited to the 

parietoinsular cortex, mainly consisting of the 

posterior insula and the parietal operculum (47). 

There are various non-vestibular responses after 

vestibular cortex stimulation (11). They may be 

interpreted as a result of bidirectional vestibular 

pathways to the brain stem, cerebellum, limbic 

system, and complex corticocortical networks and 
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also as a result of the modulation of the upper centers 

especially the prefrontal cortex on vestibular signal 

processing (12).   

Another property of the central vestibular signals is 

related to their interactions with autonomic centers 

including the nucleus tractus solitarius, the lateral 

medullary reticular formation, and the rostral 

ventrolateral medulla (62). The so-called vestibulo-

autonomic system has ascending projections to the 

thalamus and insular cortex and descending 

projections to some brain stem autonomic centers 

including the vasomotor, respiratory, nausea-

vomiting centers, and also to the rostral ventrolateral 

medulla neurons (63).           

Vestibular modulation of autonomic discharges 

Vestibular autonomic effects have been known for 

more than 50 years ago, first as motion sickness and 

soon after in cardiovascular regulation (62, 63). 

Recently these effects have also been discovered in 

bone hemostasis and bone remodeling. Normal and 

abnormal vestibular function are reported to have 

associations with bone metabolism, but a causal 

relationship is still not proven (64-71).  

Skeletal muscle neural fiber discharges are modified 

by vestibular stimulation. This effect is limited to 

vasoconstrictors and is not observed in fisimotor 

fibers. Vestibular afferent stimulation by electrical 

currents causes both increase and decrease and mix 

responses in sympathetic fiber discharges. It is 

suggested that these differential effects obey an 

anatomical distribution and there is a kind of 

patterning (72-78). 

Animal models show that even an isolated stimulation 

of one semicircular canal can change the sympathetic 

and parasympathetic discharges and will cause a 

decrease in heart rate and blood pressure (79).  It 

must be emphasized that the vestibular modulation of 

autonomic discharges involves both divisions of the 

autonomic nervous system and, it is recommended to 

be referred to as vestibulo-autonomic rather than 

vestibulo-sympathetic reflex (80, 81). 

Cardiovascular consequences of vestibular 

dysfunction 

Orthostasis is associated with vestibular system 

activity. Vestibular stimulation changes the visceral 

autonomic nerves' discharges (82, 83).  Ageing hurts 

this relationship and decreases its efficacy in 

hemodynamic adjustment during orthostasis (84-86). 

The vestibular-evoked potentials provide a dynamic 

spatiotemporal map regarding the central processing 

of vestibular signals. These potentials are induced by 

different methods including caloric, auditory, tactile 

(shaker), magnetic, galvanic and natural (rotating 

chair, tilt, motion platforms) vestibular stimulation. 

Some cortical vestibular potentials have a very short 

latency of about 6 ms indicating trisynaptic vestibulo-

thalamo-cortical pathways (87, 88). The recent 

experimental data indicates that the origin of the 

hemodynamic effect of the vestibular system may be 

otoliths organ or semicircular channels and both 

divisions of the autonomic nervous system are 

involved. Indeed, the pharmacological block of 

sympathetic or parasympathetic receptors eliminates 

the vestibuloautonomic changes in heart rate and 

both the heart rate and blood pressure respectively. 

The changes in the low and high-frequency spectral 

heart rate variability indices also indicate a 

simultaneous increase in sympathetic activity and a 

decrease in parasympathetic activity in the 

vestibuloautonomic reflex. There is approximately 1 

second time gap between electrical baroreceptor 

afferent stimulation and changes in blood pressure. 

In addition, the baroreceptor feedback closed-loop 

control of blood pressure needs an error signal. 

During orthostasis, the vestibular system provides a 

rapid and open-loop feed-forward control of blood 

pressure at less than 100 ms. This rapid vestibular 

control then is completed and maintained by 

baroreceptor control (89).  Postural orthostatic 

tachycardia syndrome is characterized by an 

exaggerated increase in heart rate and the absence 

of orthostatic hypotension. An inappropriate higher 

level of vestibular-induced sympathetic stimulation is 

reported as the underlying mechanism. This 

imbalance between appropriate paradoxical changes 

in sympathovagal autonomic tone may be due to 

enhanced utricular inputs (90). Utricular dysfunction 

also is reported to be related to orthostatic 

hypotension (91). The interaction of the vestibular 

and autonomic systems is more complex. The effect 

of vestibular signals on blood pressure and heart rate 

is mediated by different autonomic neurons including 

the rostral ventrolateral medulla neurons. These 

neurons are linked to the sympathetic preganglionic 

neurons that regulate heart rate and constriction of 

vascular smooth muscle. However, there are 

differential responses of the rostral ventrolateral 

medulla neurons to vestibular signals. When the 

intensity of the natural vestibular stimulus is low and 

the orthostasis or other movements have little or no 

impact on intravascular blood pooling there are no 

changes in rostral ventrolateral medulla neuron 

discharges. This phenomenon only exists in the 

conscious animal and does not exist in a decerebrate 

condition. This state may probably indicate a 

vestibular signal gating.  Therefore, the 
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vestibuloautonomic reflex for hemodynamic 

adjustment during orthostasis occurs merely when 

the tilt or other positional changes cause 

physiologically significant blood volume pooling. The 

vestibuloautonomic reflex is also different from 

central command-induced autonomic activities. In 

voluntary or active movements especially during 

exercise, the central commands will cause 

anticipatory feed-forward cardiovascular responses. 

This autonomic adjustment is due to the effect of 

central commands on rostral ventrolateral medulla 

neurons and does not exist in passive movements. In 

contrast, the vestibuloautonomic reflex starts only 

after the activation of vestibular sensory afferents and 

exists in both active and passive movements because 

both conditions will cause afferent vestibular signals 

(92). It must be emphasized that the relationship 

between blood pressure and vestibular function is bi-

directional. The vestibular system controls orthostatic 

blood pressure, but on the other hand, hypotension 

by itself can induce ischemic excitation of central 

vestibular neurons, which may cause dizziness in 

hypotensive states and may cause a secondary 

compensatory hypotensive-induced 

vestibuloautonomic reflex (93).         

Conclusion 

Vestibular sensory signals compensate for blood 

pooling likely in a gated and threshold-sensitive 

manner, nearly simultaneously during active or 

passive orthostasis. There is a bi-directional 

relationship between blood pressure and vestibular 

function. Vestibular dysfunction may be one of the 

underlying causes of orthostatic hypotension and by 

itself has clinical significance in managing patients 

suffering from orthostatic hypotension and syncope. 

Ischemic excitation of vestibular neurons in 

hypotensive states may cause a secondary 

compensatory hypotensive-induced 

vestibuloautonomic reflex that usually is associated 

with dizziness. However, the primary 

vestibuloautonomic reflex is a normal physiological 

compensation and is not associated with dizziness or 

other symptoms. 
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