Archive : Article / Volume 1, Issue 1

Case Report | DOI: https://doi.org/10.58489/2836-2322/004

Quantum method of pharmacological studies of biologically active substances (bav) of medicinal plants with antiviral and endothelioprotective properties.

Vasil Lyubenov Kanisov,

Dr. Eng., Lecturer NationalAcademy of Sciences- Sofia, Bolgaria.

Correspondng Author: Vasil Lyubenov Kanisov

Citation: Kanisov V.L, (2022). Quantum Method of Pharmacological studies of Biologically active substances (bav) of Medicinal plants with Antiviral and Endothelioprotective Properties. Pharmacy and Drug Development. 1(1). DOI: 10.58489/2836-2322/004

Copyright: © 2022 Vasil Lyubenov Kanisov, this is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received Date: 2022-07-23, Received Date: 2022-07-23, Published Date: 2022-08-15

Abstract Keywords: medicinal plant, yellow color, quantum technique, medical characteristic

Abstract

In this work, a comprehensive study of all medicinal plants with the yellow color of flowers is carried out. This morphologically valuable feature is color, associated with electromagnetic radiation (absorption), as the main factor in the formation of secondarymetabolites (BAV). As a resultof comparative analysisand quantum researchmethodology, we identified plant species that have a characteristic therapeutic characteristic - antiviral and have endothelioprotective properties.

Introduction

The specific characteristics of the metabolism of various plant species have determined their selective ability to accumulate chemicalsthat have high physiological activity at low concentrations - the so-called Biologically active substances (BAS). The physiological activity of substances can be considered both from the point of view of the possibility of their pharmacological study and medical use [1] , and from the point of view of maintaining the normal functioning of the human body [2] or giving a group of organisms special properties [3]. For example, flavicin (natural flavonoids) possessing endothelialprotective properties [4]. 

Secondary metabolites are the most important physiologically active compounds in the plant world. Their number, investigated by pharmacological science, is increasing every year. At the moment, only about 15% of all plant species have been studied for the presence of these substances.

Compounds of secondary metabolism, unlike primary metabolites, have functional significance not only at the level of the cell, but at the level of the tissue and cell of the whole plant. Most often, these substances perform "ecological" functions, i.e., protect the plant from various pests and pathogens, participate in the reproduction of plants, giving color and smell to flowers.  and fruits, provide interaction of plants with each other and with other organisms in the ecosystem.

In this particular case, we consider flavonoids as compounds of secondary metabolism in the plant.  The natural functions of flavonoids are poorly understood. It was assumed that due to the ability to absorb ultraviolet radiation (330-350 nm) and part of the visible light (520-560  nm), they protect plant tissues from excess radiation. In mammals, flavonoids are able to change the activity of many metabolic enzymes [5].

It has been established that in the irus SARS-CoV-2 is sensitive to ultraviolet irradiation with a dose of at least 25 mJ / cm2 [6] In this range, absorption of ultraviolet light by a medicinal plant with yellow light is observed.   

Numerous studies on the study of angioprotective and antioxidant properties of natural flavonoids, including diabetic micro- and microangiopathy, have revealed that flavonoids are among the promising groups with endothelialprotective effects. [7].

The aim of our study was to study the effect of flower color as specific characteristics of the metabolism of different plant species, which determined their ability to accumulate the chemicalM, the main flavonoid.  Which flavonoids, in turn, have specific pharmacological properties. 

Materials And Methods

The object of the study was any medicinal plants with a yellow color of flowers, as well as yellow - yellow, with the addition of a different color.  Yellow - colors of electromagnetic radiation with wavelengths from 550 to 590 nm [8]

We take electromagnetic radiation (absorption) as the main factor in the formation of secondary metabolites, to which we apply the Quantum Research Methodology.

According to the special theory of relativity (SRT), there is a connection between mass and energy, expressed by Einstein's famous formula:

                              {\displaystyle E=mc^{2},}                                  (1)

Where: {\displaystyle E} is the energy of the system;  {\displaystyle m} is its mass;  {\displaystyle c} is the speed of light in a vacuum.

In a vacuum, the energy and momentum of a photon depend only on its frequency ( {\displaystyle \nu } equivalent, on the wavelength {\displaystyle \lambda =c/\nu }):

                                                               (2)

Where: - Photon (light) energy;           - Planck's constant (6.624. 10-34 j.s);  - Wave frequencies

I consider the mass () of a photon (officially, a term that goes out of use in quantum physics) to be equal to:

                                      (3)             See: Table 1 [9]

The pressure of electromagnetic radiation, the pressure of light () is the  pressure exerted by light (and in general electromagnetic) radiation incident on the surface of a body [9] 

The pressure of electromagnetic radiation [10] is a consequence of the fact that it, like any material object with energy and moving at speed, also has a momentum: . 

And since for electromagnetic radiation,

 

Experimentally, light pressure was first studied by P. N. Lebedev in 1899. In electrodynamics, the pressure of electromagnetic radiation is described Results And Discussion

According to the formula (1), (2) and (3), we will compile Table 1. From Table 1 - row "Color" "Yellow" we will make Table 2. 

Table 1 - Correspondences of lengths, frequencies, mass and energy of electromagnetic radiation and colors.

 

        Color

Wavelength range (λ), [nm]

 Wave frequency range(ν), [Hz]1. 1014

Range 

 Mass of photons 

(m) [kg]1. 10-36

 

 Photon energy range (E) [eV]  

Infrared

 

770 -

40 000

< 3>

2,206 - 0,3577

< 1>

Red

 

625- 740

4,05-4,8

3,52 - 2,99

1,68 - 1,98

Orange

 

590 -625

4,8-5,1

3,74-3,52

1,98 - 2,10

Yellow

 

565 – 590

5,1-5,3

3,89-3,74

2,10 - 2,19

Green

 

500 – 565

5,3-6,0

4,14-3,89

2,19 - 2,48

Blue

 

485 – 500

6,0-6,2

4,56-4,14

2,48 - 2,56

Blue

 

440 – 485

6,2-6,8

5,01-4,56

2,56 - 2,82

Violet 

 

380 – 440

6,8-7,9

5,81-5,01

2,82 - 3,26

Ultraviolet

0,1- 400

2,998.104-

7,50

22 071,1 –

 5,511

12 398–3,1

Table 2 - A complete list of plants with yellow flower flowers

     Latin 

    Name

    Latin 

    Name

 1. Achillea clypeolata S.S.Yarrow yellow shield-shaped)60. Jasminum fruticans L.Jasmine shrub
2. Adonis vernalis L.Adonis spring61. Kickxia spuria (L.) Dum.Kixia real
 3. Agrimonia eupatoria L.


Common turnip

 

62. Lactuca serriola L.Compass lettuce
4. Ajuga chamaepitys (L.) Schreb.Tenacious elut63. Lathyrus pratensis L.Meadow chin
5. Anemone ranunculoides L.Buttercup windmill64. Lepidium perfoliatum L.Pierced bedbug
6. Anethum graveolens L.Garden dill65. Linaria vulgaris Mill.Common flaxseed
7. Anthemis tinctoria L.Pupavka dye66. Lotus corniculatus L.Lyadvenets horned
8. Anthyllis would violate L.Common ulcer

67. Melilotus officinalis (L.) Pall.

 

Donnik officinalis
9. Aristolochia clematitis L.Kirkazon68. Oenothera biennis L.Biennial donkey
10. Artemisia absinthium L.Wormwood69. Parsnip sativa L.Parsnip
11. Asparagus officinalis L.*Pharmacy asparagus70. Potentilla anserina L. Goose lapchatka
12. Astragalus glycyphyllos L.Astragalus sweet-leaved71. Potentilla erecta L.Lapchatka erecta
13. Barbarea vulgaris R. Br.Common meadowsweet72. Potentilla reptans L.Creeping lapchata
14. Berberis vulgaris L.Common barberry73. Prangos ferulacea (L.) Lindl.

Prangos

 

15. Bidens tripartite L.Three-part series74. Primula etalior Hill.Primrose tall

16. Brassica (Sinapis) nigra Koch 

 

Black mustard75. Primula vulgaris Huds. (P. acaulis Jacq.)Common primrose
17. Brassica juncea (L.) Czern. et Coss.Sarepta mustard76. Primula veris L. (P. officinalis Jacq.)Spring primrose
18. Bryonia alba L.Step white77. Pulicaria vulgaris Gaertn.Bloshnica
19. Bupleurum rotundifolium L.Round-leaved volodushka78. Radiola rosea L.Radiola pink
20. Caltha palustris L.Swamp koluzhnitsa79. Ranunculus acris L.Buttercup caustic
21. Carthamus lanatus L.Woolly Safflower80. Ranunculus repens L.Creeping buttercup
22. Cerinthe minor L.Small waxer81. Ranunculus would be L. (It would be verna Huds.)Chistyak
23. Chelidonium majus L.Celandine large, warthog82. Reseda luteola L. Reseda dye, cerva
24. Chrisosplenium alternifollum L.Common spleen83. Reseda lutea L.Reseda yellow
25. Cnicus benedictus L.Cnikus blessed84. Rhinanthus minor L.Small rattle
26. Colutea arborescens L.Tree bladderwort85. Rorippa pyrenaica (L.) Rchb.

Zherushnik

Pyrenees 

27. Cornu’s mas L.Common dogwood86. Rubia tinctorum L.Madder dye
28. Cotinus purpose coggygria.Leather mackerel87. Graveolens route L.Fragrant rue
29. Descurainia sofia (L.) Webb.Discurainiia of Sofia88. Salix alba L.White willow, vetla, whitewash
30. Digitalis grandiflora Mill.Large-flowered bridge89. Salix fragilis L.Willow brittle
31. Digitalis lanata Ehrh.Woolly obere90. Sambucus racemosa L.Elderberry tassel
32. Doronicum columnae Ten.Doronicum91. Scabiosa columbaria L.Scabiosa pigeon
33. Erysimum diffusium Ehrh.

Jaundice spreading

 

92. Sedum acre L.Ochitok caustic
34. Erysimum crepidifolium Rchb.Jaundice toothed 93. Sedum maximum SuterBig spruce, hare cabbage

35. Erysimum repandum L.

 

Jaundice notched-toothed

 

94. Senecio nemorensis L.Oak crossbill 
36. Euphorbia cyparissias L.Milkweed cypress95. Senecio jacobaea L.Jacob's Cross
37. Filago arvensis L.Field toad96. Senecio vulgaris L.Common crossbill
38. Filago vulgaris Lam.Small toad97. Sempervivum ruthenicum Schn.Molodilo Russkoe
39. Foeniculum vulgare Mill.Fennel vulgaris98. Sideritis montana L.Zheleznitsa gornaya
40. Galium verum L.Real underbrush99. Sideritis scardica Grsb.Railway
41. Galium cruciatum Purpose.Cruciform underbrush100. Silena otites (L.) Wibel.Smolevka long-eared
42. Genista tinctoria L.Woodwax101. Sisymbrium officinale (L.) Purpose.Gulyavnik officinalis
43. Genista segittalis L.Drock lancet 102. Solidago virgaurea L.Common goldenrod
44. Gentiana lutea L.Gentian yellow103. Stachys straight L.Chisel Straight
45. The dotted gentian L.Pinpoint gentian104. Stachys annua L.Annual cleaner 
46. Geum montanum L.Mountain gravilate 105. Tanacetum vulgare L.Feverfew maiden, golden-flower maiden
47. Geum urbanum L.Urban Gravilate106. Taraxacum officinale WebberPharmacy dandelion
48. Glaucium flavum Cr.Glaucium yellow107. Telekia speciosa Bmg.Telekia the Beautiful
49. Gnaphalium uliginosum L.Sushenitsa topyana108. Tilia grandifolia Ehrh.Linden heart-leaf
50. Helychrisum arenarium MoenchSandy cumin109. Tilia parvifolia Ehrh.Small-leaved linden
51. Heracleum sibiricum L.Hogweed110. Tilia tomentosa MoenchLime pushy, lime voylocha
52. Hieracium pilosella L.Hairy hawk111. Thalictrum minus L.Basilisk minor
53. Hyoscyamus niger L.Black belena112. Tragopogon pratensis L.Meadow goat
54. Hypericum perforatum L.St. John's wort perforated113. Tribulus terrestris L.Tribulus creeping
55. Hypochaeris maculata L.Speckled grouse 114.Tussilago farfara L.Coltsfoot
56. Inula germanica L.Elecampane Germanic115. Verbascum phlomoides L.Woolly mullein
57. Inula britannica L.Elecampane British116. Verbascum thapsiforme Schrad.Tupsoid mullein, tall mullein
58. Inula helenium L.Elecampane high117. Veratrum album L.*Chemerica white
59. Iris pseudacorus L*Yellow killer whale118. Viscum album L.White mistletoe   

Findings

1. Biologically active substances (BAV) of all medicinal plants Table 2, have high pharmacological antiviral, bactericidal, anti-inflammatory, antiseptic and insecticidal activity.

2. Looking at the equations (4), (5), (6), and (7) it turned out that the plants emitted yellow color of the flowers (in the energy range: 2.10 - 2.19 eV) absorb infrared light (in the energy range: < 1>), which light possesses some properties like: increasing the diameter of the vessels and improving blood circulation (improving endothelial function); activation of cellular immunity (antiviral activity) ; removal of tissue swelling and inflammation (improvement of endothelial function); relief of pain syndromes; improvement  of metabolism; removal of emotional stress; restoration of water-salt balance; normalization of hormonal levels.

3. Quantum mechanisms and biological structures are related – their properties are uniform and/or supplemented. This connection can be established by creating a mathematical-physical-biological model, and in the future by studying their pharmacodynamic and pharmacokinetic properties, and behavior, through this model

Summary

In this work,a comprehensive study of all medicinal plantswith yellow flowersis carried out. This morphologically valuable feature is color, associated with electromagnetic radiation (absorption), as the main factor in the formation of secondary metabolites. As a result of comparative analysis and quantum research methods, we have identified plant species that have the same therapeutic characteristics.

 

References

  1. Golovkin B. N. et al. (2001), Biologically active substances of plant origin, Otv. red. V. F. Semikhov. - M.: Nauka. - T. I. - p. 350.
  2. Gromova N. Yu., Kosivtsov Y. Yu., Sulman E. M, (2006), Tekhnologiya synthesiya i biosintezta biologically active substances: Uchebnoe posobie. - Tver': TSTU. p.84 - p. 7-18
  3. Poliksenova V. D. (2007), Biologically active substances of biogenic and abiogenic nature as inducers of non-specific resistance of tomatoes to stress // Vestnik BGU. Ser. 2: zhurnal. - No 3. - p. 83-86
  4. I.N. Tyurenkov, A.V. Voronkov, A.A. Slietsans, E.V. Volotova, (2012), Endothelioprotectors - a new class of pharmacological preparations Scientific messages, vestnik RAMS / No 7, p.50-57
  5. Middleton E., Jr., Kandaswami C., Theoharides T.C., (2000), The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. // Pharmacol. Rev. V.52, No.4. p.673-751.
  6. TEMPORARY GUIDELINES PREVENTION, DIAGNOSIS AND TREATMENT OF NOVEL CORONAVIRUS INFECTION (COVID-19) Approved by: Deputy Minister of Health of the Russian Federation E.G. Kamkin, Ministry of Health of the Russian Federation. Version 11 (07.05.2021)
  7. Lesovaya Zh.S., Kochkarov V.I., Goncharov N.F., Pokrovsky M.V., Pokrovskaya T.G., Korokin M.V., Ostashko T.V. (Scientific adviser: Doctor of Medical Sciences, Professor Pokrovsky M.V.), (2012), The possibility of using flavonoids in pharmacological correction of endothelial dysfunction // Belgorod State National Research University, Department of Pharmacology and Pharmaceutical Disciplines of IPMO. - p.140-142
  8. Artyushin L. F. Color // Physical Encyclopedia : [in 5 t.] / Gl. red. A. M. Prokhorov. - M.: Bolshaya rossiiskaya entsiklopediya, (1999), - Vol. 5: Stroboscopic Instruments - Brightness. p. 419. p 692
  9. Kanisov Vasil, Quantum Physics, (2019), Photosynthesis and Phytotherapy. Kyustendil. I.
  10. Pressure of light // Physical Encyclopedia. - M., «Sovetskaya entsiklopediya», 1988. - T. 1. - p. 553-554
  11. Lebedev P.N. Experimental study of light pressure. In: G.M. Golin, S.R. Filonovich. Classics of Physical Science. M., «V. shk. », 1989 or Lebedev P.N. Sobranie sochinenii. M., (1963).

Become an Editorial Board Member

Become a Reviewer

What our clients say

Medires Publishers

At our organization, we prioritize excellence in supporting the endeavors of researchers and practitioners alike. With a commitment to inclusivity and diversity, our journals eagerly accept various article types, including but not limited to Research Papers, Review Articles, Short Communications, Case Reports, Mini-Reviews, Opinions, and Letters to the Editor.

This approach ensures a rich tapestry of scholarly contributions, fostering an environment ripe for intellectual exchange and advancement."

Contact Info

Medires PUBLISHING LLC,
447 Broadway, 2nd Floor, Suite #1734,
New York, 10013, United States.
Phone: +1-(302)-231-2656
Email: info@mediresonline.org