Archive : Article / Volume 1, Issue 1

Case Report | DOI: https://doi.org/10.58489/2836-2187/004

Antibacterial Properties and Phytochemicals Screening of Tectona grandis (Teak) Leaf Extracts against Bacteria Implicated from Upper Respiratory Tract Infections

Oluwatoyin Omolara Daramola, Saviour God’swealth Usin, Unwana Ema Okon, Oluwabunmi Molade Olugbenga,

  1. Department of Science Laboratory Technology, School of Engineering and Sciences, D. S. Adegbenro ICT Polytechnic, Eruku-Itori, Ewekoro, Ogun State, Nigeria.
  2. Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Cross River University of Technology, Okuku Campus, Yala, Cross River State, Nigeria.

Correspondng Author: Saviour God’swealth Usin

Citation: O. O. Daramola, S. God’swealth U., Unwana E.O., O.M. Olugbenga1, (2022). Antibacterial Properties and Phytochemicals Screening of Tectona grandis (Teak) Leaf Extracts against Some Clinical Isolates Causative Agents of Upper Respiratory Tract Infections. Journal of Microbes and Research. 1(1). DOI: 10.58489/2836-2187/004

Copyright: © 2022, S. God’swealth U., this is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received Date: 2022-09-23, Received Date: 2022-09-23, Published Date: 2022-11-07

Abstract Keywords: antibacterial, upper respiratory tract infections, Tectona grandis, antibiotics resistance.

Abstract

Upper respiratory tract infections (URTIs) commonly befalls both children and adults and is a major cause of mild morbidity. URTIs ranges from mild self-limiting diseases such as common cold to serious life-threatening illnesses such as epiglottitis. The present study was aimed to evaluate the antibacterial activities of Tectona grandis (teak) leaves extractson some pathogenic microorganisms isolated from clinical samples causingURTIs. The antibacterial activities were assayed using the agar well diffusion method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using standard microbiological techniques. Phytochemical andmineral compositions of all the extracts were determined. Appreciable quantities of phytochemical such as saponins, tannins, flavonoids, glycosides, anthraquinone and alkaloids were present in both extracts of the plants with flavonoids having a higher percentage. Minerals such as K, Ca, Fe, Na and Fe were presented in both solvents. Heavy metals like Pb, Cd and as were presented in significant quantities in both extracts, however, high amount of the heavy metal composition was observed in the ethanol extract. The plant extracts exhibited varying degrees of concentration-based antibacterial activities against bacteria implicated from URTIs. They showed a high significant antibacterial activity against Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. Conclusively, the plant extracts contained several bioactive compounds (phytochemical), thereby validating the use of this plants for therapeutic tenacities. Also, the antibacterial activity of the leaf extracts against the test organisms also supports its usage in traditional medicine practice.

Introduction

Upper respiratory tract infections (URTIs)are caused by mainly viruses (human rhinovirus (hRV), coronavirus,parainfluenza viruses (PIVs), adenovirus (ADV), human metapneumovirus (hMPV), influenza, enterovirus, bocavirus and respiratory syncytial virus (RSV)) and some bacteria,though present with almost indistinguishable clinical symptoms (Heikkinen and Jarvinen, 2003, Allander, 2008; Caliendo, 2011; Harris et al., 2016; Pokorski, 2016). In most cases, it spreads from person-to-person, when touching the secretions by hand or directly inhalingthe respiratory droplets.Bacterial infections could be a prime cause of URTIs, but they may also be due to superinfection of a primarily viralinfection (Turner, 2007). Risk factorsfor the development of upper respiratory tract infections are close contact with infected person, most likely close contact of children who attend the kindergarten or school, travelerswith exposure to numerous individuals, smoking which may alter mucosal resistance, anatomic changesof respiratory tract, and nasal polyposis (Heymann,2014). URTIs causes variety of patient diseases such as acute bronchitis, the common cold, influenza, and respiratory distress syndromes (Thomas and Bomar, 2022). It has a high cost to society, being responsible for absenteeism from school and work, unnecessary medical care and is occasionally associated with serious sequelae (Cotton et al., 2008). It affects the nose, nasalcavity, pharynx, and larynx withsubglottic area of trachea (Green, 2006). Lack of timely diagnosis by using rapid and accuratetests had contributed to overuse and abuse of antibiotics around the world (Laxminarayan et al., 2013). In developing nations, antibiotics abuse is very common due to a culture of self-medication and over-prescription by clinicians (Li et al., 2016). Antibiotics are mainly prescribed empirically, not based on microbiological investigation (Yezli and Li, 2012;Zeng et al., 2017).

Antibiotic resistance has become a global concern(Westh et al., 2004) as the clinical efficacy of many existing antibiotics is being threatened by the emergenceof multi-drug resistantpathogens (Bandow et al., 2003). The majority of bacteria are resistant to many antibiotics therefore, the use of plant extracts against resistant bacteria leads to new choice for the treatment of infectious diseases (Purushotham et al., 2010). Antimicrobials of plant origin have enormoustherapeutic potentials (Evans and Turnbull,2004). Plants are rich source of phytochemicals which are responsible for the therapeutic potentials, therefore, plants are used for making different drugs having medicinal property. 25% of the medicinal drugs prepared in the developed countries are based on the plants and their derivatives (Moses et al., 2019). Therefore, this has led to the screening of several medicinalplants for possibleantimicrobial activity (Iwu et al., 1999).

Tectona grandisLinn, belongs to the family of Lamiacea. It can be found in India, Pakistan, Bangladesh, Burma, Indonesia, Thailand, Nigeria, Philippines, China and Malaysia. It is widely cultivated in other tropical areas, as its wood is moderately hard, easily worked,and extremely durable(Uzama and Okolo, 2017). The leaves and other parts of the tree are used as diuretics, laxative, sedative, expectorant, anthelmintic, anti- inflammatory, antibacterial, cytotoxic, anti-anaemic, haemostatic, depurative, vulnerary, leprosy, burn wounds, skin disease, pruritus, haemopstysis, antiulcer, antiviral, menstrualdisorders, heamorrhages, sore throat, dyspepsiaand burning of stomach caused by bileover flow, vermifuge, strengthening of sight, treatment of pile, dysentery, antidiabetic, antioxidant, antipyretic, as dye and incense (Mrityunjoy et al., 2007; Mahesh and Vijay, 2009; Purushotham et al., 2010; Bitchagno et al., 2015; Mahesh et al., 2016). Previous phytochemical investigations have led to the isolation of the triterpenoids, flavonoids (Ragasa et al., 2008a),chromomoric acid derivatives (Aguinaldo et al., 1997; Ragasaet al., 2008b), anthroquinones (Sumthong et al., 2006; Sumthong et al., 2008; Kopa et al., 2014), naphthoquinones (Pradeep and Pahup, 2004; Lacret et al., 2011), anthraquinone-naphthoquinones (Aguinaldo et al., 1993; Lacret et al., 2011), apocarotenoids (Maciaset al., 2008) and lignans (Lacret et al., 2012). This study is designed to evaluate the antibacterial activities of ethanol and ethyl acetate extracts of Tectona grandis leaves on againstbacteria implicated from upper respiratory tract infections throughdetermining the Minimum inhibitory concentration (MIC) and Minimum bacterial concentration (MBC) of the plant extracts.

Materials And Methods

Equipment, Chemicaland Reagents

Materials used in laboratory included beaker, measuringcylinder, porcelain dish, spatula, conicalflask, retort stand,incubator, petri-dish, autoclave, cork borer, sterileloop, cotton wool, spirit lamp, test tubes and racks,aluminum foil, hand gloves, disposable pipette, filter paper(Whatman No. 1), electric blender,atomic absorption spectrophotometer (AAS), Erlenmeyer flask,Pyrex volumetric flask, analytical and mechanical weighing balance. All chemicals and reagents used in this work were of analytical grade and they included ferric chloridesolution, Fehling's solutionA and B, hydrochloric acid (concentrated and dilute), sodium bicarbonate, sodium hydroxide and dilute ammoniasolution. Tetraoxosulphate (vi) acid, glacial acetic acid, lead acetate, 10 % alcoholicsolution of naphthol,Mayer's reagent, Dragendorff's reagent, picric acid solution (Hager'sreagent), Wagner's reagent,ciprofloxacin (standard drug), nutrient agar, perchloric- nitric acid, concentrated HNO3, concentrated sulphuric acid, ethanoland ethyl acetatewere also includedamong others.

Collection, Identification and Extraction of Plant Materials

Fresh leaves of 

Tectona grandis 

were collected from the vicinity of D. S. Adegbenro ICT Polytechnic, Itori, Ewekoro Local Government Area, Ogun State, Nigeria. The identification and authentication of the plantmaterials was done at Forest Research of Nigeria, JerichoHill, Ibadan, Oyo State, with the vouchernumber of FHI 113357. The collected sample was air dried at room temperature for twenty-one (21) days. The samples were ground into powdery state using an electric blender. 200 g of the ground sample of the leaf was weighed and dissolved in 500 mL of ethanol, again 200 g of the groundsample of the leaf was weighed and dissolved in 500 mL of ethyl acetate. They were kept inthe refrigerator for 72 hours.The extract was filtered

using a chess cloth and Whatman filter paper No. 1 (125 cm), to obtain filtrates of the respective solvents of ethanol and ethyl acetate, which were then used for the study.

Collections and Maintenance of Test OrganismsThe test organismsused for this study were all clinicalisolates from the Department of Medical Microbiology and Parasitology, SacredHeart Hospital, Lantoro,

Abeokuta, Ogun State. The isolates include; Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The organismswere collected on a sterileagar slant and incubatedat 37oCfor 24 hours.

Preparation of Agar

Agar was prepared accordingto manufacturer instruction and the agar used was nutrient agar for the analysis. Seven (7) grams of nutrient agar was weighed and dissolved in 250 ml of distilledwater, mixed and was autoclaved at 121oC for 15 minutes.

Antimicrobial Assay (Agar Well Diffusion Method) Antimicrobial activities of ethyl acetate and ethanolextracts of Tectona grandis L. leaf were evaluated by the agar well diffusion method (Bauer et al., 1996) using ciprofloxacin as positive control.The microbial culturewas adjusted to 0.5 McFarlandturbidity standards. The plate was flooded with 1 ml each of the standardized test organism, swirled and excess inoculums was carefully decanted. A sterile cork borer was used to make wells (6 mm in diameter) on the agar plates. Aliqoutsof 0.2 ml of dilution were applied on each well in the culture plates previously inoculated with the test organisms. The holes were filled with the plant extract.Each well was labeled approximately; control experiment was also carried out where the hole was filled with ciprofloxacin as positive control for bacteria. However,each extract was tested in triplicates. These were then left on the bench for 1 h forproper diffusion of the nanoparticles (NCCLS, 1990). Thereafter the plates were incubated at 37oC for 24 h for bacteria. Antimicrobial activities were determined by measuring the zone of inhibition around each well (Excluding the diameter of the well) for the extract. Triplicate tests were conducted against each organism and diameterof zone of inhibition (mm) as expressedas Mean and Standardderivation.

Determination of Minimum Inhibitory Concentration (MIC)

The minimum inhibitory concentration (MIC) of the ethylacetate and ethanol extracts of Tectona grandis L. leaf for the bacterialisolates were evaluated according to the method of Ochei and Kolhatkar (2008), using microtubes dilution method described by National Committee for Clinical Laboratory standards (NCCLS,2000).

Determination of Minimum Bactericidal Concentration (MBC)

The minimumbactericidal concentration (MBC) was determined by first selecting the tubes that showed no growth during the MIC determination. A loopful from each of the tube was sub-cultured on the sterile nutrient agar and incubated for 24 h at 37oC. The bactericidal effect was demonstrated when no growth occurred on the medium.

Quantitative Phytochemical Screening Phytochemical screeningwas carried out on the plant extracts to ascertain the presence of secondary metabolites. Presence of saponin,tannin, alkaloid and flavonoid were determined using the procedure as described by Sofowora (2008).

Determination of the Mineral Composition

The mineral contents of the samples were determined by the procedure of AOAC (2000). Calcium, potassium, magnesium, phosphorus, iron and other elements were measured with Atomic Absorption Spectrophotometer (Thermo scientific S Series Model GE 712354) after digesting with perchloric-nitric acid mixture (AOAC, 2000). Prior todigestion, 5 ml of the samples were measured into a 125 mL Erlenmeyer flask with the addition of perchloric acid (4 mL), concentrated HNO3 (25 mL) and concentrated sulphuric acid (2 mL) under a fume hood. The contents were mixed and heated gently in a digester at low to medium heat on a hot plate under perchloric acid fume hood and heating was continued until dense white fume appeared. Heatingwas continued strongly for half a minute and then allowed to cool followed by the addition of 50 mL distilled water. The solution was allowed to cool and filtered completely with a wash bottle into a Pyrex volumetric flask and then made up with distilledwater. The solutionwas then read on Atomic Absorption Spectrophotometer.

Result And Discussion

Quantitative Phytochemical study

In the study, tannins, saponins, alkaloids, flavonoids, glycoside and anthraquinone were observed in the quantitative analysis of the phytochemical study. Flavonoids were most abundant followed by alkaloids and tannins respectively (Tables 1).

Table 1: Phytochemical Analysis of Ethyl acetate and Ethanol Extracts of T. grandis leaf (%).

Parameters

Ethyl Acetate

Extract

Ethanol

Extract

Tannins3.722.16
Saponins1.831.45
Alkaloids4.163.72
Flavonoids5.896.21
Glycoside0.360.28
Anthraquinone0.440.52

Mineral compositions

The mineral compositions of the plant sample are presented in Table 2. Sodium (Na), potassium (K) and calcium (Ca) and iron (Fe) were presented in appreciable quantities in both solvents. But Sodium (Na), Potassium (K), and Calcium (Ca) were highly present in ethyl acetate extract than in the ethanol extract excluding Iron (Fe), which is more present in the ethanol extract than the ethyl acetate. Moreso, the heavy metals compositions of the plant sample were presented in Table 3. Lead (Pb), Cadmium (Cd) and Arsenic (As) were presented in significant quantities in both extracts of T. grandis leaf. However, high amount of the heavy metal’s composition was observed in the ethanol extract.

Table 2: Mineral compositions of Ethyl acetate and Ethanol Extracts of T. grandis leaf (mg/L).

Parameters

Ethyl Acetate

Extract

Ethanol

Extract

Sodium (Na)4.0213.218
Potassium (K)2116.0831761.388
Calcium (Ca)67.89163.211
Iron (Fe)192.456206.363

Table 3: Heavy metals compositions of Ethyl acetate and Ethanol Extracts of T. grandis leaf.

Parameters

Ethyl Acetate

Extract

Ethanol

Extract

Lead (Pb)0.0680.144
Cadmium (Ca)0.1720.245
Arsenic(As)0.8651.022

Note: All results are represented as mg/L expect Arsenic (As) which is represented in µg/L.

Antibacterial Activity

Table 4 reveals the antibacterial of the test organisms in ethyl acetate and ethanol extracts of Tectona grandis and the control antibiotic. All the test microorganisms were susceptible to the extracts. Ethyl acetate had the highest antibacterial activity against Staphylococcus aureus (70.67± 2.082 mm), while the least active was ethanol extract on Klebsiella pneumonia (18.00± 2.646 mm).

Table 4: Antibacterial Activity of Tectona grandis Extracts on some Pathogens.

OrganismsEthyl    Acetate ExtractEthanol ExtractAntibiotics (Control)
E. coli67.33±3.05524.00±2.00060.00±8.660
Kleb. pneumoniae18.00±2.64615.33±1.15551.00±3.606
Staph. aureus70.67±2.08225.00±5.00061.33±2.082

The Mean with difference along the same row is significant at (p<0> Tukey Duncan’s Multiple range test. Values are mean of three replicates ± Standard Deviation.

Minimum Inhibitory Concentration (MIC)

MIC activity of Tectona grandis on the microorganisms is presented in Table 5. The same mean zone diameter of 7.29± 4.774 mm was observed for all the organisms with both extracts. However, a mean zone of inhibition of 8.33±3.608 mm was obtained for E. coli and Staphylococcus aureus, whereas the least mean zone of inhibition of 5.21±1.804 was recorded for Klebsiella pneumonia with the control antibiotics.

Table 5: Minimum Inhibitory Concentration Activity of Tectona grandis extractson some Pathogens.

OrganismsEthyl    AcetateExtractEthanol ExtractAntibiotics (Control)
E. coli7.29±4.7747.29±4.7748.33±3.608
Kleb. pneumoniae7.29±4.7747.29±4.7745.21±1.804
Staph. aureus7.29±4.7747.29±4.7748.33±3.608

The Mean with difference along the same row is significant at (p<0> Tukey Duncan’s Multiple range test. Values are mean of three replicates ± Standard Deviation.

Minimum Bactericidal Concentration (MBC)

Table 6 presents the highest mean zone diameter of 100± 0.000 mm obtained for E. coli with ethyl acetate and Staphylococcus aureus with ethanol extract. The control antibiotic had the least mean zone of diameter for all the microorganisms.

Table 6: Minimum Bactericidal Concentration Activity of Tectona grandis Extracts on some Pathogens.

Organisms Ethyl Acetate ExtractEthanol ExtractAntibiotics (Control)
E. coli100.00±0.000 83.33±28.8686.25±0.000
Kleb. pneumonia66.67±28.86866.67±28.8688.33±3.608
Staph. aureus50.00±0.000100.00±0.00010.42±3.608

The Mean with difference along the same row is significant at (p<0> Tukey Duncan’s Multiple range test. Values are mean of three replicates ± Standard Deviation.

The resistance to antibiotics is becoming an increasingly important health and economic menace. However, different antimicrobial substances are elucidated by higher tropical plants (Ogunmefun et al., 2017). The antimicrobial activities of these plants are due to the presence of secondary metabolites present mainly in the leaves, as they are the site for the synthesis of bioactive compounds, hence the presence of high concentrations of active compounds and antibacterial activities in the leaves (Moses et al., 2019). These bioactive compounds, phytochemicals, are known for their interference with the proteins and enzymes of the microbial cell membrane, destroying its structure, leading to the inhibition of various cell functions and the eventual death of the microorganism (Mostafa et al., 2018; Muhammed et al., 2021).

From the results in Tables 4-6, all the microorganisms exhibited varying degrees of susceptibility to both extracts of Tectona grandis. The greater mean zone diameter indicated greater antimicrobial effect of the leaf extracts on the microorganisms. The variation could be attributed to the differences in the cell wall composition of the microorganisms. Furthermore, the genetic composition of plasmids which are easily distributed among the microbial strains might account for these differences (Karaman et al., 2003; Bitchagno et al., 2015). It is surprising to note that the zones of inhibition for the MIC (Table 5) was the same for both extracts of Tectona grandis on all the microorganisms, whereas the mean zone diameter of the MBC (Table 6) of both extracts of Tectona grandis for the test microorganisms significantly exceeded that of the standard antibiotic (ciprofloxacin). This result can be considered hopeful in view of the need to develop of novel phytodrugs for combating bacterial infections of publichealth importance.

Phytochemicals have been reported in several studies to be responsible for the antibacterial potentials of medicinal plants (Preethi et al., 2010; Manimegalai and Rakkimuthu, 2012; Gaikwad and Banerjee, 2013; Jaiswal et al., 2014). In this study, a wide range of phytochemicals such as tannins, saponin, alkaloid, flavonoid, glycoside and anthraquinone were observed. Flavonoids were most abundant followed by alkaloids and tannins respectively (Tables 1). Flavonoids have been recognised as having a protective effect in plants against microbial invasion by plant pathogens. Flavonoids have been shown to possess important biological activities, including antifungal and antibacterial activities (Kamath and Shabaraya, 2017). However, the ethyl acetate extract had the highest yield of bioactive compounds while the least yield of phytochemical was observed in the ethanol extract.

Sodium (Na), potassium (K) and calcium (Ca) and iron (Fe) were presented in noticeable quantities in both solvents. But Na, K, and Ca were highly present in ethyl acetate extract than in the ethanol extract excluding Fe, which is more present in the ethanol extract. Minerals are essential for proper tissue functioning and a daily requirement for human nutrition (Iniaghe et al., 2009). Minerals acts as a component and activator of many plant enzymes (Paul et al., 2013). Iron is essential in immune functioning, cognitive development, temperature regulation, energy metabolism in their lower concentrations, and is required for the synthesis of haemoglobin and myoglobin while its deficiency causes anaemia (Ikem and Egiebor, 2005; Geissler and Singh, 2011). Calcium is needed for bones and teeth formation and maintenance, blood clothing and muscle contraction (Wardlaw et al., 2004). Sodium is a key factor in retaining body fluid. It helps to make it easier for the small intestine to absorb nutrients like glucose and amino acids. Elevated levels of Na are linked with hypertension and high blood pressure. Potassium is required during glycogenesis, acid-base balance, regulation of osmotic pressure, nerve impulse conduction, and muscle contraction (Njuguna et al., 2013; Paul et al., 2013).  Heavy metals are metallic chemical element with a relatively high density that are toxic, poisonous and harmful to human well-being at low concentrations (Sobha et al., 2007). Lead (Pb), cadmium (Cd), and arsenic (As) are typical examples of these heavy metals (Tadesse et al., 2018). In this study, Lead (Pb), cadmium (Cd) and arsenic (As) were presented in significant quantities in both extracts of Tectona grandis leaves. However, high amount of the heavy metal’s composition was observed in the ethanol extract. As, Cd, and Pb are the most common heavy metals potentially hazardous to human well-being (Lambert et al., 2000). However, cadmium and lead have more significant side effects on human well-being (Hashemi et al., 2017). The trivial amounts of heavy metals exhibited, suggests that there are not toxic to the body.

Conclusion

This study revealed that Tectona grandis (teak) leaves extracts studied has antibacterial activity on pathogens causing upper respiratory tracts infections (URTIs), in particular Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The plants also contained various phytochemical, minerals and in sufficient quantities of heavy metals thereby validating the use of this plants for therapeutic tenacities.

Acknowledgements

We are grateful to the Department of Science Laboratory Technology, D. S. Adegbenro ICT Polytechnic, Itori, Ewekoro, Ogun State for the infrastructural facilities and access to scientific instrumentation. We acknowledge Mr. Bankole Ayomipo Oluwakunmi for assisting with the phytochemical analysis of the plant materials, thank you so much.

References

  1. Aguinaldo, A. M., Ocampo, O. P. M., Bowden, B. F., Gray, A. I. and Peter, G. (1993). Tectograndone, an anthraquinone-naphthoquinone pigment from the leaves of Tectona grandis. Phytochemistry, 4: 933–935.
  2. Aguinaldo, M., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A. and Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387: 489-493.
  3. Allander, T. (2008). Human bocavirus. Journal of Clinical Virology, 41(1): 29–33.
  4. Association of Official Analytical Chemists (AOAC). (2000). Official Methods of Analysis. 18th Edition, The Association of Official Analytical Chemists, Washington DC, USA.
  5. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. and Turk, M. (1996). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45: 493-496.
  6. Bitchagno, G. T., Sama Fonkeng, L., Kopa, T. K., Tala, M. F., Kamdem Wabo, H., Tume, C. B., Tane, P. and Kuiate, J. R. (2015). Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complementary and Alternative Medicine, 15: 265.
  7. Caliendo, A. M. (2011). Multiplex PCR and emerging technologies for the detection of respiratory pathogens. Clinical Infectious Diseases, 52(4): 326–330.
  8. Cotton, M. F., Innes, S., Jaspan, H., Madide, A. and Rabie, H. (2008). Management of upper respiratory tract infections in children. South African Family Practice, 50(2): 6–12.
  9. Evans, J. and Turnbull, J. W. (2004). Plantation forestry in the Tropics. Oxford University Press, New York, NY, USA, pp. 482.
  10. Gaikwad, D. D. and Banerjee, S. K. (2013). Pharmacognostical and phyto-physicochemical investigation of M. indica Linn. International Journal of Research in Pharmaceutical Sciences, 4: 270-275.
  11. Green, R. (2006). Symptomatic treatment of upper respiratory tract infections in children. Journal of Clinical Virology, 48(4): 38-42.
  12. Grusak, M. A. and DellaPenna, D. (1999). Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review of Plant Physiology and Plant Molecular Biology, 50(10): 131-161.
  13. Harris, A. M., Hicks, L. A. and Qaseem, A. (2016). High value care task force of the American College of P, for the centers for disease C, prevention: appropriate antibiotic use for acute respiratory tract infection in adults: advice for high-value care from the American College of Physicians and the Centers for Disease Control and Prevention. Annals of Internal Medicine, 164(6): 425–434.
  14. Hashemi, M., Salehi, T., Aminzare, M., Raeisi, M. and Afshari, A. (2017). Contamination of toxic heavy metals in various foods in Iran: a review. Journal of Pharmaceutical Science Resources, 9(10): 1692–1697.
  15. Heikkinen, T. and Jarvinen, A. (2003). The common cold. Lancet, 361(9351): 51–59.
  16. Heymann, D. L. (2014). Control of Communicable Diseases Manual. 20th Edition, American Public Health Association (APHA) Press, Washington DC.
  17. Ikem, A. and Egiebor, N. O. (2005). Assessment of trace elements in canned fishes (mackerel, tuna, salmon, sardines and herrings) marketed in Georgia and Alabama (United States of America). Journal of Food Composition and Analysis, 18(8): 771–787.
  18. Iniaghe, O. M., Malomo, S. O. and Adebayo, J. O. (2009). Proximate composition and phytochemical constituents of leaves of some Acalypha species. Pakistan Journal of Nutrition, 8(10): 256-258.
  19. Iwu, M. W., Duncan, A. R. and Okunji, C. O. (1999). New antimicrobial of plant origin. In. Janick Jed. Perspective on New crops and new uses. Alexandria. VA: ASHS press: Pp 457- 462.
  20. Jaiswal, Y., Naik, V., Tatke, P., Gabhe, L. and Vaidya, A. (2014). Pharmacognostic and preliminary phytochemical investigations of Anacardium Occidentale (Linn.) leaves. International Journal of Pharmacy and Pharmaceutical Sciences, 4: 625-631.
  21. Kamath, K. K. and Shabaraya, A. R. (2017). Comparison of antibacterial activity of leaves extracts of Tectona grandis, mangifera Indica, and Anacardium Occidentale. International Journal of Current Pharmaceutical Research, 9(1): 36-39.
  22. Karaman, I., Sahin, F., Güllüce, M., Ogütçü, H., Sengül, M. and Adigüzel, A. (2003). Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. Journal of Ethnopharmacology, 85(2-3): 231–235.
  23. Kopa, T. K., Tchinda, A. T., Tala, M. F., Zofou, D., Jumbam, R., Wabo, H. K. Titanji, V. P. K., Frédérich, M., Tan, N. H. and Tane, P. (2014). Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochemistry Letters, 8: 41–45.
  24. Lacret, R., Varela, R. M., Molinillo, J. M. G., Nogueiras, C. and Macias, F. A. (2011). Anthratectone and naphthotectone, two quinones from bioactive extracts of Tectona grandis. Journal of Chemical Ecology, 37(12): 1341–1348.
  25. Lacret, R., Varela, R. M., Molinillo, J. M. G., Nogueiras, C. and Macias, F. A. (2012). Tecto-noelins, new norlignans from bioactive extract of Tectona grandis. Phytochemistry Letters, 5: 382–386.
  26. Lambert, M., Leven, B. A. and Green, R. M. (2000). New methods of cleaning up heavy metal in soils and water. Environment science and technology briefs for citizens. Manhattan: Kansas State University.
  27. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta A. Q., Qamar, F. N., Mir, F., Kariuki, S. and Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet Infectious Diseases, 13(12): 1057–1098.
  28. Li, J., Song, X., Yang, T., Chen, Y., Gong, Y., Yin, X. and Lu, Z. (2016). A systematic review of antibiotic prescription associated with upper respiratory tract infections in China. Medicine (Baltimore), 95(19): e3587.
  29. Macias, F. A., Lacret, R., Varela, R. M., Nogueiras, C. and Molinillo, J. M. G. (2008). Bioactive apocarotenoids from Tectona grandis. Phytochemistry, 69: 2708–2715.
  30. Mahesh, G. and Vijay, N. (2009). Effect of Tectona grandis on dexamethasone-induced insulin resistance in mice. Journal of Ethnopharmacology, 122(2): 304 - 307.
  31. Mahesh, S., Vaishnav, V., Kumar, P., Mohammad, N. and Ansari, S. A. (2016). Characterization and validation of teak plus trees ramets of national teak germplasm bank, Chandrapur, Maharashtra through microsatellites. Tropical Plant Research, 3(1): 213–220.
  32. Manimegalai, S. and Rakkimuthu, G. (2012). Phytochemical screening of stem of Couroupita guianensis. International Journal of Pharmaeutical Sciences and Research, 3: 4434-4437.
  33. Moses, A. S., Saurabh, N. S. and Agarwal, A. (2019). Antimicrobial activity of Tectona grandis against MDR enteric pathogens. Journal of Pharmacognosy and Phytochemistry, 8(5): 1833-1836.
  34. Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N. and Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25: 361-366.
  35. Mrityunjoy, M., Naira nayeem, A., Jagadish, V. K. and Mohammed, A. (2007). Evaluation of Tectona grandis leaves for wound healing activity. Pakistan Journal of Pharmaceutical Sciences, 20(2): 120–124.
  36. Muhammed, H., Abdullahi, L. H., Mayaki, F. G. and Boko, U. H. (2021). Phytochemical compositions, antimicrobial activities, and thin layer chromatography analysis of aqueous, and methanol extracts of Tectona grandis leaf. AROC in Natural Product Research, 01(01): 044–051.
  37. National Committee for Clinical Laboratory Standards (NCCLS). (1990). Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A4. National Committee for Clinical Laboratory Standards, Wayne.
  38. National Committee for Clinical Laboratory Standards (NCCLS). (2000). Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data—Proposed Guideline M39-P. NCCLS, Wayne, PA, USA.
  39. Njuguna, D. G., Wanyoko, J. K., Kinyanjui, T. and Wachira, F. N. (2013). Mineral elements in the Kenyan tea seed oil cake. International Journal of Research in Chemistry and Environment, 3(1): 253-261.
  40. Ochei, J. and Kolhatkar, A. (2008). Medical Laboratory Science, Theory and Practices, Tata McGraw-Hill, Pp. 311-347.
  41. Ogunmefun, O. T., Ekundayo, E. A., Akharaiyi, F. C. and Ewhenodere, D. (2017). Phytochemical screening and antibacterial activities of Tectona grandis L. f. (Teak) leaves on microorganisms isolated from decayed food samples. Tropical Plant Research, 4(3): 376–382.
  42. Paul, B. K., Saleh-e-In, M. M., Ara, A. and Roy, S. K. (2013). Minerals and nutritional composition of radhuni (Carum roxburghianum Benth.) seeds. International Food Research Journal, 20(4): 1731-1737.
  43. Pokorski, M. (2016). Prospect in Pediatric Diseases Medicine. Cham: Springer International Publishing, Pp. 57-64.
  44. Pradeep, K. G. and Pahup, S. (2004). A naphthoquinone derivative from Tectona grandis (Linn). Journal of Asian Natural Products Research, 6: 237–240.
  45. Preethi, R. M., Devanathan, V. V. and Loganathan, M. (2010). Antimicrobial and antioxidant efficacy of some medicinal plants against foodborne pathogens. Advanced Biomedical Research, 4: 122-125.
  46. Purushotham, K. G., Arun, P., Jayarani, J. J., Vasnthakuopari, R., Sankar, L. and Reddy, B. R. (2010). Synergistic in vitro antibacterial activity Tectona grandis leaves with tetracycline. International Journal of PharmTech Research, 2: 519–523.
  47. Ragasa, C. Y., Lapina, M. C., Lee, J. J., Mandia, E. H. and Rideout, J. A. (2008a). Secondary metabolites from Tectona philippinensis. Natural Product Research, 9: 820–824.
  48. Ragasa, C. Y., Tepora, M. M., Espinelli, D. H., Mandia, E. H. and Rideout, J. A. (2008b). Chromomoric acid derivatives from Tectona philippinensis. Journal of Natural Products, 71: 701–705.
  49. Sobha, K., Poornima, A., Harini, P. and Veeraiah, K. (2007). A study on biochemical changes in the fresh water fish, Catla catla (Hamilton) exposed to the heavy metal toxicant cadmium chloride. Kathmandu University Journal of Science Engineering and Technology, 3(2): 1.
  50. Sofowora, A. (2008). A medicinal plants and traditional medicine in West Africa, 3rd edition. John Wiley and Sons Ltd. New York. Pp. 200-203.
  51. Sumthong, P., Damveld, R. A., Choi, Y. H., Arentshorst, M., Ram, A. F. J., Cees, A. M. J. J., Van Den, H. and Verpoorte, R. (2006). Activity of quinones from Teak (Tectona grandis) on fungal cell wall stress. Planta Medica, 72(10): 943–944.
  52. Sumthong, P., Romero-Gonzalez, R. R. and Verpoorte, R. (2008). Identification of anti-wood rot compounds in Teak (Tectona grandis L. f) Sawdust extract. Journal of Wood Chemistry and Technology, 28: 247–260.
  53. Tadesse, M., Tsegaye, D. and Girma, G. (2018). Assessment of the level of some physico-chemical parameters and heavy metals of Rebu river in oromia region, Ethiopia. MOJ Biology and Medicine, 3(4): 99–118.
  54. Thomas, M. and Bomar, P. A. (2022). Upper Respiratory Tract Infection. Treasure Island (FL): StatPearls Publishing.
  55. Turner, R. (2007). Rhinovirus: More than just a common cold. Journal of Infectious Diseases, 197: 765-766.
  56. Uzama, D. and Okolo, S. (2017). A Comparative study on the phytochemicals and antimicrobial activities of the hexane extracts of the leaves of Tectona grandis and its mistletoe. Frontiers in Heterocyclic Chemistry, 3(2): 19-22.
  57. Wardlaw, G. M., Hampl, J. S. and DiSilvestro, R. A. (2004). Perspectives in nutrition. 6th ed. New York: McGraw Hill.
  58. Westh, H., Zinn, C. S. and Rosdahi, V. T. (2004). An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microbial Drug resistant, 10: 169 – 176.
  59. Yezli, S. and Li, H. (2012). Antibiotic resistance amongst healthcare-associated pathogens in China. International Journal of Antimicrobial Agents, 40(5): 389–397.
  60. Zeng, L., Hu, D., Choonara, I., Mu, D., Zhang, L., Li, X., Zhang, Z., Hu, Z. and Quan, S. (2017). A prospective study of the use of antibiotics in the emergency department of a Chinese University hospital. International Journal of Pharmacy Practice, 25(1): 89–92.

Become an Editorial Board Member

Become a Reviewer

What our clients say

Medires Publishers

At our organization, we prioritize excellence in supporting the endeavors of researchers and practitioners alike. With a commitment to inclusivity and diversity, our journals eagerly accept various article types, including but not limited to Research Papers, Review Articles, Short Communications, Case Reports, Mini-Reviews, Opinions, and Letters to the Editor.

This approach ensures a rich tapestry of scholarly contributions, fostering an environment ripe for intellectual exchange and advancement."

Contact Info

Medires PUBLISHING LLC,
447 Broadway, 2nd Floor, Suite #1734,
New York, 10013, United States.
Phone: +1-(302)-231-2656
Email: info@mediresonline.org